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Solution Hints for Exercises No.12

Exercise 1 Let us reason semantically, for |= instead of ` (completeness thm). [You
may think of working in an arbitray but fixed model of Q.]

(a) We show the claim by induction on n ∈ N. Base case. For m > 0, Q |= ¬ 0 = m.
Note that 0 = 0 and that m = ṁ + 1 for ṁ := m − 1 implies that m = ṁ + 1.
Hence the claim follows from Q1.
Induction step. For m > n+1, Q |= ¬n+ 1 = m: as m = ṁ+1 and n+ 1 = n+1,
by Q2 the claim follows from the inductive hypothesis that Q |= ¬n = ṁ, as
ṁ = m− 1 > n.

(b) We want to use ϕ+(x, y, z) := x+ y = z to represent addition. We merely need to
show that Q |= n+m = n+m for all n,m ∈ N; uniqueness of the corresponding
z even holds in the strong sense that (by functionality of +, irrespective of Q)
` ∀x∀y∃=1z x+ y = z. Q |= n+m = n+m is easily established by induction on
m on the basis of Q4 and Q5.

(c) Suppose that for all n,m ∈ N: Q |= ϕf (n, f(n)) ∧ ∀z(ϕf (n, z) → z = f(n)), and
similarly Q |= ϕg(m, g(m)) ∧ ∀z(ϕg(m, z)→ z = g(m)).
Let ϕh(x, z) := ∃y(ϕg(x, y) ∧ ϕf (y, z))
Then, for all m, putting n := g(m), we have Q |= ∀y

(
ϕg(m, y) → y = n

)
and

therefore also Q |= ∀y∀z
(
(ϕg(m, y) ∧ ϕf (y, z))→ (y = n ∧ z = f(n))

)
. Therefore

Q |= ∀z(ϕh(m, z)→ z = h(m)). That Q |= ϕh(m,h(m)) is obvious.

Exercise 2 (a) Let us think of working in a given model of Q and show by induction
on n that ∀x(ϕ6(x, n)→ (x = 0 ∨ x = 1 ∨ . . . ∨ x = n)) is satisfied.
n = 0: suppose ϕ6(x, 0) ∧ ¬ x = 0 is true for some assignment a to x. As a 6= 0,
by Q3, a = ȧ+ 1 for some ȧ. Then b+ a = 0 implies (b+ ȧ) + 1 = 0 by Q5, thus
contradicting Q1.
Induction step from n to n + 1. Suppose ϕ6(x, n+ 1) for some assignment a to
x. Then there is some b such that b + a = n+ 1 = n + 1. If a 6= 0, then again
a = ȧ+ 1 for suitable ȧ by Q3, and from Q5 and Q2 and we obtain b+ ȧ = n. By
induction hypothesis therefore ȧ ∈ {0, . . . , n}, whence the desired claim follows
for a = ȧ+ 1.

(b) Suppose that m 6 n. Let k := n−m. Then Q ` k+m = n (see previous exercise),
and hence Q ` ∃z(z +m = n), i.e. Q ` ϕ6(m,n).
Conversely, if n < m, then Q ` ∀z(ϕ6(z, n)→ (z = 0 ∨ z = 1 ∨ . . . ∨ z = n)) and
Q ` ¬ m = ` for 0 6 ` 6 n imply that Q ` ¬ϕ6(m,n).

(c) The map n 7→ nA from N to B is the required isomorphism. It is injective by
Exercise 1(a), it is surjective by definition, 0 and 1 are mapped to 0A and 1A by
definition, (n+m)A = nA + mA by Exercise 1(b), which, together with Axioms

Q6/7 yields (n ·m)A = nA ·mA.

(d) One can construct a model of Q whose universe consists of the disjoint union of
the sets N and Z. We indicate elements as nN or dZ to say which part of this



universe they come from. We interpret 0 and 1 as 0N and 1N, respectively. The
successor operation a 7→ a+ 1 (which is part of the interpretation of +) is chosen
to be the natural one on both parts: nN + 1 := (n + 1)N and dZ + 1 := (d + 1)Z.
Further interpret + as usual whenever the second argument is from the N-part:
nN + mN := (n + m)N and dZ + mN := (d + m)Z. For second argument from the
Z-part, however, we put nN + dZ := dZ and eZ + dZ := dZ. One checks that this
stipulation does respect Q4 and Q5, and multiplication can be defined to satisfy
Q6 and Q7 as well (how exactly?). In this model, the relation defined by ϕ6 does
not link any dZ 6= d′Z: x+ dZ = dZ 6= d′Z and x+ d′Z = d′Z 6= dZ for all x.
Also note that, if A and B are defined as above, then for every a ∈ A\B we have
ϕ6(n, a). This can be proved by induction on n.

Exercise 3 (Löb’s Theorem)
Assume Φ ` provΦ(pηq)→ η and let ϕ be a fixpoint

Φ ` ϕ↔
(
provΦ(pϕq)→ η

)
.

From the latter derivability get, by (L1) and (L2), that

Φ ` provΦ(pϕq)→
(
provΦ(pprovΦ(pϕq)→ ηq)

)
.

We now combine this with the following instance of (L3):

Φ ` provΦ(pprovΦ(pϕq)→ ηq)→
(

provΦ(pprovΦ(pϕq)q)→ provΦ(pηq)
)
,

to obtain (by propositional rules in S) that

Φ ` provΦ(pϕq)→
(
provΦ(pprovΦ(pϕq)q)→ provΦ(pηq)

)
.

Using (L3) for ϕ:
Φ ` provΦ(pϕq)→ provΦ(pprovΦ(pϕq)q),

we find (by modus ponens in S):

Φ ` provΦ(pϕq)→ provΦ(pηq).

By the assumption on η, i.e., Φ ` provΦ(pηq)→ η, this further gives (by modus ponens
in S)

Φ ` provΦ(pϕq)→ η. (∗)

As Φ ` ϕ ↔
(
provΦ(pϕq) → η

)
, (∗) implies that Φ ` ϕ and, since by (L1) now also

Φ ` provΦ(pϕq), we also get from (∗) that Φ ` η.


