Solution Hints for Exercises No.10X

Exercise 1 $\hat{\Phi}$ is recursive as the function $n \mapsto \psi_n$ enumerates it in lexicographic (in fact, length increasing) fashion (compare Exercise above).

 $\Phi^{\vdash} = \hat{\Phi}^{\vdash}$ essentially follows from the finiteness property for \vdash :

If $\Phi \vdash \varphi$, the there is some *n* such that $\{\varphi_i : i \leq n\} \vdash \varphi$ and hence $\psi_n \vdash \varphi$ and also $\hat{\Phi} \vdash \varphi$; conversely, if $\hat{\Phi} \vdash \varphi$, then there is some *n* such that $\psi_n \vdash \varphi$ (since $\psi_n \vdash \psi_m$ for all $m \leq n$) and therefore $\{\varphi_i : i \leq n\} \vdash \varphi$, whence $\Phi \vdash \varphi$.

Exercise 2 Suppose first that φ_P^* is satisfiable, $\mathfrak{B} = (B, <^{\mathfrak{B}}, 0^{\mathfrak{B}}, W^{\mathfrak{B}}) \models \varphi_P^*$. Just as in the corresponding argument for Theorem 4.2.1 (Trakhtenbrot), we find that \mathfrak{A}_P^n is isomorphic to the restriction of \mathfrak{B} to its initial segment of length n + 1. Therefore the part of the computation of P on \Box that is encoded in \mathfrak{A}_P^n does not reach a halting configuration since $\mathfrak{B} \models \forall x \forall y \forall \overline{z} (Wxy\overline{z} \to \neg y = \underline{k})$. As this is true for every $n \in \mathbb{N}$, P does not terminate on \Box .

If conversely P does not terminate on \Box , then $\mathfrak{A}_P \models \varphi_P^*$. Hence $\lceil P \rceil \notin H$ iff $\varphi_P^* \in SAT$.