Solution Hints for Exercises No.1

Exercise 1 Substructures of

- (1) $\mathfrak{A}_1 = (\mathbb{N}, \mathsf{S}, 0)$: only \mathfrak{A}_1 itself.
- (2) $\mathfrak{A}_2 = (\mathbb{N}, \mathsf{S})$: all restrictions to subsets $\mathbb{N}_{\geq n} = \{m \in \mathbb{N} : m \geq n\}$ for $n \in \mathbb{N}$. However, any such is isomorphic to \mathfrak{A}_2 itself via the map $h : m \mapsto m - n$.
- (3) $\mathfrak{A}_3 = (\mathbb{N}, \operatorname{graph}(\mathsf{S}))$: all restrictions to non-empty subsets of \mathbb{N} .
- (4) $\mathfrak{A}_4 = \mathfrak{N} = (\mathbb{N}, +^{\mathfrak{N}}, \cdot^{\mathfrak{N}}, <^{\mathfrak{N}}, 0, 1)$: only \mathfrak{A}_4 itself.
- (5) $\mathfrak{A}_5 = (\mathbb{N}, +\mathfrak{N}, <\mathfrak{N}, 0)$: all restrictions to subsets of \mathbb{N} that contain 0 and that are closed under addition. Some of them are isomorphic to \mathfrak{A}_5 , for instance $\mathfrak{A}_5 \upharpoonright k\mathbb{N}$ for $k \neq 0$, and some are not, for instance with $\mathfrak{A}_5 \upharpoonright (\{0\} \cup \mathbb{N}_{\geq 2})$ (check!).

Exercise 2 Composition of bijections from A to A is associative with neutral element id_A and with inverse maps for inverse elements. One checks that id_A is an automorphism of \mathfrak{A} ; that the composition of any two automorphisms of \mathfrak{A} is again an automorphism; and that the inverse of any automorphism is an automorphism. This shows that composition is an operation on Aut(\mathfrak{A}), having a neutral element and inverses.

- **Exercise 3** (i) Closed under homomorphisms (check!), not closed under substructures, for instance $(\mathbb{N}, +, 0)$ is a substructure of $(\mathbb{Z}, +, 0)$ but not a group.
 - (ii) Closed under homomorphisms and closed under substructures.
- (iii) Closed under homomorphisms (check by case distinction on whether h(0) = h(1)), not closed under substructures, for instance $\{\mathbb{N}, +, \cdot, 0, 1\}$ is a substructure of $\{\mathbb{R}, +, \cdot, 0, 1\}$ but not a field.
- (iv) Closed under substructures, not closed under homomorphisms. For instance $(\mathbb{N}, <^{\mathfrak{N}}) \xrightarrow{\text{hom}} (\mathbb{N}, U)$ where U is the universal binary relation on \mathbb{N} .
- (v) Closed under substructures, not closed under homomorphisms.

Exercise 4 For countable signature σ :

(a) E.g., T_{σ} countable: ranking terms in T_{σ} according to (for instance) the number of applications of rule (T3) in their generation, show by induction on $n \in \mathbb{N}$ that the set of terms of rank n is countable. Then T_{σ} is countable as a countable union of countable sets.

Alternately, one can show that for a countable alphabet Σ , the language Σ^* of finite words over Σ is also countable. Both T_{σ} and FO(σ) are subsets of such a language.

(b) One may construct the closure of $A_0 \cup \{c^{\mathfrak{A}} : c \in \operatorname{const}(\sigma)\}$ under the $f^{\mathfrak{A}}$ for all $f \in \operatorname{fctn}(\sigma)$ algebraically (in countably many stages, each of which is countable). Alternatively, look at the interpretation maps for terms, $\mathfrak{I}_{\beta} : T_{\sigma} \to A$ where $\beta : \operatorname{Var} \to A_0$ is a surjective assignment.

In this variant the image of the interpretation map for terms is the universe of a substructure $\mathfrak{B} \subseteq \mathfrak{A}$, contains A_0 and is countable.

Exercise 5 (a) Verify the closure conditions for constant and function symbols.

- (b) For instance show by induction on $t \in T_{\sigma}(\emptyset)$ (or for $t \in T_{\sigma}$ with $\operatorname{var}(t) = \emptyset$) that for any homomorphism $h: \mathfrak{T}_{\sigma}(\emptyset) \xrightarrow{\operatorname{hom}} \mathfrak{A}$ and any assignment $\beta: \operatorname{Var} \to A, h$ must coincide with the interpretation function $\mathfrak{I}_{\beta}^{\mathfrak{A}}$ on $T_{\sigma}(\emptyset)$.
- (c) Similar to part (b), but for any $\beta \colon \operatorname{Var} \to A$ that extends β_0 .