Solution Hints for Exercises No. 1

Exercise 1 Substructures of
(1) $\mathfrak{A}_{1}=(\mathbb{N}, S, 0)$: only \mathfrak{A}_{1} itself.
(2) $\mathfrak{A}_{2}=(\mathbb{N}, \mathrm{S})$: all restrictions to subsets $\mathbb{N}_{\geqslant n}=\{m \in \mathbb{N}: m \geqslant n\}$ for $n \in \mathbb{N}$. However, any such is isomorphic to \mathfrak{A}_{2} itself via the map $h: m \mapsto m-n$.
(3) $\mathfrak{A}_{3}=(\mathbb{N}, \operatorname{graph}(\mathrm{S}))$: all restrictions to non-empty subsets of \mathbb{N}.
(4) $\mathfrak{A}_{4}=\mathfrak{N}=\left(\mathbb{N},+^{\mathfrak{N}}, \mathfrak{N}^{\prime},<^{\mathfrak{N}}, 0,1\right)$: only \mathfrak{A}_{4} itself.
(5) $\mathfrak{A}_{5}=\left(\mathbb{N},+^{\mathfrak{N}},<^{\mathfrak{N}}, 0\right)$: all restrictions to subsets of \mathbb{N} that contain 0 and that are closed under addition. Some of them are isomorphic to \mathfrak{A}_{5}, for instance $\mathfrak{A}_{5} \upharpoonright k \mathbb{N}$ for $k \neq 0$, and some are not, for instance with $\mathfrak{A}_{5} \upharpoonright\left(\{0\} \cup \mathbb{N}_{\geqslant 2}\right)$ (check!).

Exercise 2 Composition of bijections from A to A is associative with neutral element id_{A} and with inverse maps for inverse elements. One checks that id_{A} is an automorphism of \mathfrak{A}; that the composition of any two automorphisms of \mathfrak{A} is again an automorphism; and that the inverse of any automorphism is an automorphism. This shows that composition is an operation on $\operatorname{Aut}(\mathfrak{A})$, having a neutral element and inverses.

Exercise 3 (i) Closed under homomorphisms (check!), not closed under substructures, for instance $(\mathbb{N},+, 0)$ is a substructure of $(\mathbb{Z},+, 0)$ but not a group.
(ii) Closed under homomorphisms and closed under substructures.
(iii) Closed under homomorphisms (check by case distinction on whether $h(0)=h(1)$), not closed under substructures, for instance $\{\mathbb{N},+, \cdot, 0,1\}$ is a substructure of $\{\mathbb{R},+, \cdot, 0,1\}$ but not a field.
(iv) Closed under substructures, not closed under homomorphisms.

For instance $\left(\mathbb{N},<^{\mathfrak{N}}\right) \xrightarrow{\text { hom }}(\mathbb{N}, U)$ where U is the universal binary relation on \mathbb{N}.
(v) Closed under substructures, not closed under homomorphisms.

Exercise 4 For countable signature σ :
(a) E.g., T_{σ} countable: ranking terms in T_{σ} according to (for instance) the number of applications of rule (T3) in their generation, show by induction on $n \in \mathbb{N}$ that the set of terms of rank n is countable. Then T_{σ} is countable as a countable union of countable sets.
Alternately, one can show that for a countable alphabet Σ, the language Σ^{*} of finite words over Σ is also countable. Both T_{σ} and $\mathrm{FO}(\sigma)$ are subsets of such a language.
(b) One may construct the closure of $A_{0} \cup\left\{c^{\mathfrak{A}}: c \in \operatorname{const}(\sigma)\right\}$ under the $f^{\mathfrak{A} \mathfrak{l}}$ for all $f \in \operatorname{fctn}(\sigma)$ algebraically (in countably many stages, each of which is countable). Alternatively, look at the interpretation maps for terms, $\mathfrak{I}_{\beta}: T_{\sigma} \rightarrow A$ where $\beta: \operatorname{Var} \rightarrow A_{0}$ is a surjective assignment.
In this variant the image of the interpretation map for terms is the universe of a substructure $\mathfrak{B} \subseteq \mathfrak{A}$, contains A_{0} and is countable.

Exercise 5 (a) Verify the closure conditions for constant and function symbols.
(b) For instance show by induction on $t \in T_{\sigma}(\emptyset)$ (or for $t \in T_{\sigma}$ with $\operatorname{var}(t)=\emptyset$) that for any homomorphism $h: \mathfrak{T}_{\sigma}(\emptyset) \xrightarrow{\text { hom }} \mathfrak{A}$ and any assignment β : Var $\rightarrow A, h$ must coincide with the interpretation function $\mathfrak{I}_{\beta}^{2 L}$ on $T_{\sigma}(\emptyset)$.
(c) Similar to part (b), but for any β : Var $\rightarrow A$ that extends β_{0}.

