Exercises No. 9

Exercise 1 Write R-programs over the binary alphabet $\mathbb{B}=\{0,1\}$ for the following.
(a) A reverse copy program, which maps the reverse u^{-1} of the content u of R_{1} into R_{2} (assuming that all registers but R_{1} are initially empty). More precisely, we want P_{1} on $\bar{u}=(u, \square, \square, \ldots)$ to terminate with register contents $\left(u, u^{-1}, \square, \ldots\right)$. Note that u is meant to be kept in R_{1}. How do we get a copy subroutine " $R_{2}:=R_{1}$ " from this?
(b) An equality checking program P_{2} which decides the condition $R_{1}=R_{2}$ in the sense that P_{2} terminates on any input $\bar{u}=\left(u_{1}, u_{2}, \square, \ldots\right)$ and terminates with $R_{3}=\square$ iff $u_{1} \neq u_{2}$.
(c) Combine the elements of these programs to obtain a program that decides the set Palindrome $=\left\{w \in \mathbb{B}^{*}: w=w^{-1}\right\}$.

Exercise 2 Write an R-program over the binary alpbabet $\mathbb{B}=\{0,1\}$ that computes the successor function in terms of binary representations of natural numbers. (For definiteness: use binary representations with least significant bit to the right, so that $u=b_{n-1} \ldots b_{1} b_{0} \in \mathbb{B}^{n}$ represents the number $(u)_{2}=\sum_{i=0}^{n-1} b_{i} 2^{i}$.) So P is meant to lead from register contents $\bar{u}=(u, \square, \ldots)$ to contents $\left(u^{\prime}, \square, \ldots\right)$ where $\left(u^{\prime}\right)_{2}=(u)_{2}+1$.

Exercise 3 Let $\mathbb{A}=\left\{a_{1}, \ldots, a_{r}\right\}$ be an alphabet with r letters, $r \geqslant 1$, enumerated in this fixed order. The lexicographic ordering $<_{\text {lex }}$ on \mathbb{A}^{*} is defined through:

$$
w<_{\operatorname{lex}} w^{\prime} \text { iff }\left\{\begin{array}{l}
|w|<\left|w^{\prime}\right| \text { or } \\
|w|=\left|w^{\prime}\right| \text { and } w=u a_{i} v, w^{\prime}=u a_{j} v^{\prime} \text { where } 1 \leqslant i<j \leqslant r .
\end{array}\right.
$$

A function $f: \mathbb{N} \rightarrow \mathbb{A}^{*}$ is monotone if $f(m)<_{\text {lex }} f(n)$ for all $m<n$. Show (informally, sketching corresponding algorithms in words if you like) that the following are equivalent for any $W \subseteq \mathbb{A}^{*}$ [you may want to refer to Lemma 4.1.2]:
(i) W is decidable.
(ii) W is finite or $W=\operatorname{image}(f)$ for a monotone total recursive function $f: \mathbb{N} \rightarrow \mathbb{A}^{*}$.

Exercise 4 (cf. Lemma 4.1.2) Sketch a proof of the following claim for R-decidability and R-enumerability, i.e., for register machines over some fixed alphabet \mathbb{A}.
The following are equivalent for any $W \subseteq \mathbb{A}^{*}$:
(i) W is decidable.
(ii) Both W and $\bar{W}=\mathbb{A}^{*} \backslash W$ are recursively enumerable.

Exercise 5 Let $L_{1}, L_{2} \subseteq \mathbb{A}^{*}$ be languages over the finite alphabet \mathbb{A}.
(a) Assume that $L_{1} \subseteq L_{2}$. Discuss whether decidability/enumerability of L_{1} or of L_{2} have any implications on decidability/enumerability of L_{2} or of L_{1}.
(b) What does decidability/enumerability of L_{1} and L_{2} imply about $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$?
(c) Assume that $L_{1} \subseteq L_{2}$ where both L_{1} and L_{2} are decidable and $L_{2} \backslash L_{1}$ is infinite. Find an undecidable language L such that $L_{1} \subseteq L \subseteq L_{2}$.
(Hint: you may use the undecidability of the halting problem.)

Exercise 6 [Extra] Sketch a procedure to simulate the operation of any register machine program using k registers, one of which is used as input/output register, by means of a register machine using only two registers. For simplicity, you may just consider $k=3$.
Hint: working with an alphabet $\mathbb{A}^{\prime}:=\mathbb{A} \cup\{\#\}$ with a new letter $\#$, try to simulate the register content $\bar{u}=\left(u_{1}, \ldots, u_{k}\right)$ of P by $\bar{u}^{\prime}:=\left(u_{1} \# u_{2} \# \ldots \# u_{k}, \square\right)$ of P^{\prime}.

