Exercises No.8

Exercise 1 Discuss some of the following classes of structures and determine whether they are $(\Delta$ -)elementary or not:

- (i) (dis-)connected graphs; (iv) (atomless) boolean algebras;
- (ii) (non-)archimedean fields; (v) (complete) real-closed ordered fields;
- (iii) divisible groups; (vi) algebraically closed fields.

Exercise 2 Consider structures $\mathfrak{A} = (A, S^{\mathfrak{A}}, 0^{\mathfrak{A}}, <^{\mathfrak{A}})$ of signature $\sigma = \{S, 0, <\}$ with unary function S, constant 0 and binary relation <. Let φ be an FO(σ)-sentence saying that < is a linear ordering (in the sense of <) with minimal element 0, that every element different from 0 is in the image of S, and that S maps every element to its direct successor w.r.t. <. Show that the following are equivalent for all $\mathfrak{A} \in Mod(\varphi)$:

- (i) all non-empty subsets $X \subseteq A$ have a $<^{\mathfrak{A}}$ -minimal element.
- (ii) for all subsets $X \subseteq A$: if $0^{\mathfrak{A}} \in X$ and X is closed under $S^{\mathfrak{A}}$, then X = A.
- (iii) for all $a \in A$, the $<^{\mathfrak{A}}$ -interval $[0^{\mathfrak{A}}, a]$ is finite.

(iv)
$$\mathfrak{A} \simeq (\mathbb{N}, \mathsf{S}^{\mathfrak{N}}, 0^{\mathfrak{N}}, <^{\mathfrak{N}}).$$

Exercise 3 Using the induction principle on ω show that the following are consequences of ZFC (even without (FOUND)):

- (a) (i) $\forall x (x \in \omega \to ``x \text{ transitive}")$, which in particular implies transitivity of \in over ω . (Recall that a set x is *transitive* if it satisfies $\forall y (y \in x \to y \subseteq x)$.)
 - (ii) $\forall x (x \in \omega \to \neg x \in x)$: irreflexivity of \in over ω .
 - (iii) $\forall x \forall y ((x \in \omega \land y \in \omega) \rightarrow (x \in y \lor x = y \lor y \in x))$ (trichotomy for \in over ω). Hint: show that the set $\{x \in \omega : \forall y (y \in \omega \rightarrow (x \in y \lor x = y \lor y \in x))\}$ is inductive; it may be useful to establish first that, for all $z, y \in \omega$: $z \in y \Rightarrow (Sz \in y \lor Sz = y)$.
- (b) Prove from the characterisation of ω as the minimal inductive set: \in well-orders ω .

Exercise 4

- (a) Show that (FOUND) rules out the existence of \in -cycles $x_0 \in x_1 \in \cdots \in x_{n-1} \in x_0$, for any $0 < n \in \mathbb{N}$. Use this to show that $\operatorname{ZFC} \models (x \cup \{x\} = y \cup \{y\}) \to x = y$.
- (b) Show that $(x \cup \{x\} = y \cup \{y\}) \rightarrow x = y$ even without (FOUND).
- (c) Justify the following principle of \in -induction on the basis of (FOUND). Suppose that for $\varphi(x) \in FO(\{\in\})$,

$$\operatorname{ZFC} \models \forall x \Big(\forall z (z \in x \to \varphi(z)) \to \varphi(x) \Big)$$

where we write $\varphi(z)$ for $\varphi_x^{\underline{z}}$. Show that then ZFC $\models \forall x(``x \text{ transitive''} \to \varphi(x)).$

Hint: assume to the contrary that $\neg \varphi(x)$ for some transitive x and look at an \in -minimal element of $\{z \in x : \neg \varphi(z)\}$ to derive a contradiction.

Exercise 5 [Extra] Sketch formulations of the following mathematical principles in the framework of ZFC (and discuss in outline how they can be proved in ZFC):

- (a) For any non-empty set (family) x of sets, there exists a set representing the product over the sets $(y)_{y \in x}$; the product of a non-empty family of non-empty sets is non-empty.
- (b) The power set of any set is of strictly larger cardinality than the set itself.
- (c) The set of all sequences of natural numbers exists, and is not countable.