Exercises No. 4

Exercise 1

Show that the following propositional rules are correct and in fact derivable rules of \mathcal{S}.
(a)

For the first one note that $(\varphi \rightarrow \psi)$ is treated as an abbreviation for $(\neg \varphi \vee \psi)$.
(b)

$$
\frac{\Gamma \neg \neg \varphi}{\Gamma \varphi}
$$

(NN 1)
$\Gamma \varphi$
(NN 2)

Note that the variants of these double negation rules in the form of sequents $\Gamma \neg \neg \varphi \varphi$ and $\Gamma \varphi \neg \neg \varphi$ are easily derivable from the corresponding contrapositive rules.

Exercise 2 Discuss rules for the introduction of propositional connectives \wedge or \rightarrow in the antecedent/succedent. What are appropriate criteria?

Exercise 3 Show that the following rule is correct and that it is derivable in \mathcal{S} :

$$
\frac{\Gamma \neg \exists x \neg \varphi}{\Gamma \varphi \frac{t}{x}} \quad \text { (} \forall \text {-instantiation). }
$$

Exercise 4 Give a formal proof, through an \mathcal{S}-derivation of the following (obviously valid) 'theorem', in a signature σ with a constant symbol c and unary function symbol f :

$$
\neg \exists x \neg \exists y x=f y \quad \vdash \quad \exists x c=f f x .
$$

Note that the left hand sentence says that f is surjective. Hint: one may try to use a sequent of the form $c=f y y=f z c=f f z$ as an intermediate step, and successively quantify variables in the right order with appropriate \exists introduction rules. Note also that an application of the derived rule from exercise 3 above allows one to make use of instantiations of the (universal) sentence from the left hand side of the desired derivation, once one has a copy of it on the right.

(chain) | Γ | φ | |
| :--- | :--- | :--- |
| Γ | φ | ψ |

(NN 1) $\frac{\Gamma \neg \neg \varphi}{\Gamma \varphi}$
(impl 1) $\frac{\begin{array}{l}\Gamma \neg \varphi \\ \Gamma(\varphi \vee \psi)\end{array}}{\Gamma \psi}$

$$
(\forall S) \frac{\Gamma \varphi^{\frac{y}{x}}}{\Gamma \forall x \varphi} \begin{aligned}
& y \text { not in } \\
& \text { free }(\Gamma, \forall x \varphi)
\end{aligned}
$$

$$
(\mathrm{symm}=) \frac{\Gamma t=t^{\prime}}{\Gamma t^{\prime}=t}
$$

$$
\left(\text { congr }=\frac{(n)}{\left.\begin{array}{c}
(n) \\
f
\end{array}\right) \quad \begin{array}{c}
t_{1}=t_{1}^{\prime} \\
\vdots \\
t_{n}=t_{n}^{\prime}
\end{array}} \begin{array}{l}
\Gamma f t_{1} \ldots t_{n}=f t_{1}^{\prime} \ldots t_{n}^{\prime}
\end{array}\right.
$$

(NN 2) $\frac{\Gamma \varphi}{\Gamma \neg \neg \varphi}$
(impl 2) $\begin{aligned} & \Gamma \text { 分 } \\ & \frac{\Gamma \psi \psi)}{\Gamma \psi}\end{aligned} \quad$ "modus ponens"
$(\forall$ inst $) \frac{\Gamma \forall x \varphi}{\Gamma \varphi \frac{t}{x}}$

$$
(\text { trans }=) \frac{\begin{array}{l}
\Gamma \quad t=t^{\prime} \\
\Gamma \quad t^{\prime}=t^{\prime \prime}
\end{array}}{\Gamma \quad t=t^{\prime \prime}}
$$

$$
(\operatorname{congr}=, \stackrel{(n)}{R}) \begin{array}{cl}
& \Gamma \quad t_{1}=t_{1}^{\prime} \\
& \vdots \\
\Gamma & t_{n}=t_{n}^{\prime} \\
\Gamma & R t_{1} \ldots t_{n}
\end{array} \begin{aligned}
& \Gamma \quad R t_{1}^{\prime} \ldots t_{n}^{\prime}
\end{aligned}
$$

