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Exercises No.4

Exercise 1
Show that the following propositional rules are correct and in fact derivable rules of S.

r —
(modus ponens) — (contr 2)
T 'y =p
For the first one note that (¢ — 1) is treated as an abbreviation for (—¢ V 9).
(b) I' == Iy
(NN 1) (NN 2)

Note that the variants of these double negation rules in the form of sequents I' == ¢
and [' ¢ = are easily derivable from the corresponding contrapositive rules.

Exercise 2 Discuss rules for the introduction of propositional connectives A or — in the
antecedent /succedent. What are appropriate criteria?

Exercise 3 Show that the following rule is correct and that it is derivable in S:

I —dz—p
(V-instantiation).
It

Exercise 4 Give a formal proof, through an S-derivation of the following (obviously valid)
‘theorem’, in a signature o with a constant symbol ¢ and unary function symbol f:

—dr—~Jdyx=fy F dxc=ffux.

Note that the left hand sentence says that f is surjective. Hint: one may try to use a sequent
of the form c¢= fy y= fz ¢c= f fz as an intermediate step, and successively quantify variables
in the right order with appropriate 3 introduction rules. Note also that an application of the
derived rule from exercise 3 above allows one to make use of instantiations of the (universal)
sentence from the left hand side of the desired derivation, once one has a copy of it on the
right.
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[plus two more]

“modus ponens”
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