Exercises No. 3

Exercise 1 (a) How would you model vector spaces as σ-structures (with certain constraints) for suitable choices of a signature σ ?
(i) Vector spaces V over a field \mathbb{F} (where both \mathbb{F} and V vary).
(ii) Vector spaces V over a fixed field \mathbb{F} (in particular, a fixed finite field like \mathbb{F}_{p}).
(b) Over the class of expansions of the standard structure $\mathfrak{R}=(\mathbb{R},+, \cdot, 0,1,<)$ to σ structures, for $\sigma:=\sigma_{\mathrm{ar}} \cup\{f\}$ with a unary function symbol f, express the following properties in $\mathrm{FO}(\sigma)$:
(i) f is continuous at 0 .
(ii) f is uniformly continuous.
(iii) f is differentiable at 0 .

Remark: Try to modularise your attempts by first formalising useful subformulae that can be re-used.

Exercise 2 A formula $\varphi \in \mathrm{FO}(\sigma)$ is said to be in negation normal form (nnf) if it is built with conjunction, disjunction and existential and universal quantification from atoms and negated atoms. Define, inductively on $\operatorname{FO}(\sigma)$, a map from $\mathrm{FO}(\sigma)$ to the subset of nnf-formulae in $\mathrm{FO}(\sigma), \varphi \mapsto \operatorname{nnf}(\varphi)$ such that $\varphi \equiv \operatorname{nnf}(\varphi)$. Prove by induction that your map is as required.

Exercise 3 Consider formulae $\varphi \in \mathrm{FO}(\sigma)$ in negation normal form (see above). With a fixed σ-structure \mathfrak{A} associate the following two-person game between a Refuter R and a Verifier V (also in the literature: Adam and Eve, Abelard and Eloise, \forall and \exists). Positions of the game are pairs (φ, β) for nnf formulae φ and assignments β in \mathfrak{A} (partial assignments to free (φ) would also suffice). Who is to move in position (φ, β), and the possible such moves, depends on φ :

- if $\varphi=\left(\varphi_{1} \vee \varphi_{2}\right): V$ to move to one of $\left(\varphi_{1}, \beta\right)$ or $\left(\varphi_{2}, \beta\right)$ (her choice).
- if $\varphi=\left(\varphi_{1} \wedge \varphi_{2}\right): R$ to move to one of $\left(\varphi_{1}, \beta\right)$ or $\left(\varphi_{2}, \beta\right)$ (his choice).
- if $\varphi=\exists x \varphi^{\prime}, V$ is to move to a position $\left(\varphi^{\prime}, \beta \frac{a}{x}\right)$ for an element $a \in A$ of her choice.
- if $\varphi=\forall x \varphi^{\prime}, R$ is to move to a position $\left(\varphi^{\prime}, \beta \frac{a}{x}\right)$ for an element $a \in A$ of his choice.

In any other position $(\varphi, \beta), \varphi$ is either atomic or negated atomic. These are the final positions in the game, in which V wins if $(\mathfrak{A}, \beta) \models \varphi$ while R wins if $(\mathfrak{A}, \beta) \not \models \varphi$ (determined in terms of term equalties and membership in relations). Show by induction on nnf formulae φ that

$$
\begin{array}{lll}
\mathrm{V} \text { has a winning strategy in position }(\varphi, \beta) & \text { iff } & (\mathfrak{A}, \beta) \models \varphi, \\
\mathrm{R} \text { has a winning strategy in position }(\varphi, \beta) & \text { iff } & (\mathfrak{A}, \beta) \not \models \varphi .
\end{array}
$$

[A winning strategy requires a choice of own moves in response to any choice of moves from the opponent such that a win in the game is guaranteed; as formulae get shorter in each move, the game terminates in a finite number of rounds that can be bounded in terms of the current formula.]
Extra: What is the right version of the game if negation is freely allowed?

