Exercises No.3

- **Exercise 1** (a) How would you model vector spaces as σ -structures (with certain constraints) for suitable choices of a signature σ ?
 - (i) Vector spaces V over a field \mathbb{F} (where both \mathbb{F} and V vary).
 - (ii) Vector spaces V over a fixed field \mathbb{F} (in particular, a fixed finite field like \mathbb{F}_p).
 - (b) Over the class of expansions of the standard structure $\Re = (\mathbb{R}, +, \cdot, 0, 1, <)$ to σ structures, for $\sigma := \sigma_{ar} \cup \{f\}$ with a unary function symbol f, express the following
 properties in FO(σ):
 - (i) f is continuous at 0.
 - (ii) f is uniformly continuous.
 - (iii) f is differentiable at 0.

Remark: Try to modularise your attempts by first formalising useful subformulae that can be re-used.

Exercise 2 A formula $\varphi \in FO(\sigma)$ is said to be in *negation normal form* (nnf) if it is built with conjunction, disjunction and existential and universal quantification from atoms and negated atoms. Define, inductively on $FO(\sigma)$, a map from $FO(\sigma)$ to the subset of nnf-formulae in $FO(\sigma)$, $\varphi \mapsto nnf(\varphi)$ such that $\varphi \equiv nnf(\varphi)$. Prove by induction that your map is as required.

Exercise 3 Consider formulae $\varphi \in FO(\sigma)$ in negation normal form (see above). With a fixed σ -structure \mathfrak{A} associate the following two-person game between a *Refuter* R and a *Verifier* V (also in the literature: Adam and Eve, Abelard and Eloise, \forall and \exists). Positions of the game are pairs (φ, β) for nnf formulae φ and assignments β in \mathfrak{A} (partial assignments to free(φ) would also suffice). Who is to move in position (φ, β), and the possible such moves, depends on φ :

- if $\varphi = (\varphi_1 \lor \varphi_2)$: V to move to one of (φ_1, β) or (φ_2, β) (her choice).
- if $\varphi = (\varphi_1 \land \varphi_2)$: R to move to one of (φ_1, β) or (φ_2, β) (his choice).
- if $\varphi = \exists x \varphi', V$ is to move to a position $(\varphi', \beta \frac{a}{x})$ for an element $a \in A$ of her choice.

- if $\varphi = \forall x \varphi'$, R is to move to a position $(\varphi', \beta \frac{a}{x})$ for an element $a \in A$ of his choice.

In any other position (φ, β) , φ is either atomic or negated atomic. These are the final positions in the game, in which V wins if $(\mathfrak{A}, \beta) \models \varphi$ while R wins if $(\mathfrak{A}, \beta) \not\models \varphi$ (determined in terms of term equalties and membership in relations). Show by induction on nnf formulae φ that

- V has a winning strategy in position (φ, β) iff $(\mathfrak{A}, \beta) \models \varphi$,
- R has a winning strategy in position (φ, β) iff $(\mathfrak{A}, \beta) \not\models \varphi$.

[A winning strategy requires a choice of own moves in response to any choice of moves from the opponent such that a win in the game is guaranteed; as formulae get shorter in each move, the game terminates in a finite number of rounds that can be bounded in terms of the current formula.]

Extra: What is the right version of the game if negation is freely allowed?