MARTIN OTTO STEPHANE LE ROUX Winter 2012/13

Exercises No.2

- **Exercise 1** (a) Prove the following assertion for all $t \in T_{\sigma}$ by (syntactic) induction based on the calculus that generates T_{σ} : no proper prefix of t is an element of T_{σ} , and t is not a proper prefix of any $t' \in T_{\sigma}$.
 - (b) For $V \subseteq$ Var we defined $T_{\sigma}(V) := \{t \in T_{\sigma} : \operatorname{var}(t) \subseteq V\}$. Alternatively, one could use a modified calculus to generate just the terms with variable symbols from V. Do so, and show that the results agree.

Exercise 2 (Ex. 1.5 again, now that we have the prerequisites.)

Let σ be a signature consisting of only function and constant symbols, and with $\operatorname{const}(\sigma) \neq \emptyset$. Let \mathfrak{T}_{σ} be the *free or term* σ -structure with universe T_{σ} . With a subset $V_0 \subseteq$ Var associate the set of terms $T_{\sigma}(V_0) := \{t \in T_{\sigma} : \operatorname{var}(t) \subseteq V_0\}$.

- (a) Show that $T_{\sigma}(V_0)$ is the universe of a substructure $\mathfrak{T}_{\sigma}(V_0) := \mathfrak{T}_{\sigma} \upharpoonright T_{\sigma}(V_0) \subseteq \mathfrak{T}_{\sigma}$.
- (b) Show that for any σ -structure \mathfrak{A} there is a unique homomorphism $h: \mathfrak{T}_{\sigma}(\emptyset) \xrightarrow{\text{hom}} \mathfrak{A}$.
- (c) Let $\beta_0: V_0 \to A$ be a *partial assignment* in the σ -structure \mathfrak{A} . Show that there is a unique homomorphism $h: \mathfrak{T}_{\sigma}(V_0) \xrightarrow{\text{hom}} \mathfrak{A}$ that extends β_0 [in fact: the restriction of the interpretation function of terms for any assignment that extends β_0].

Exercise 3 Consider $\sigma = \{R\}$ with a binary relation symbol R. Show that the following classes of σ -structures are elementary, by providing appropriate FO(σ) sentences.

- (i) C_1 the class of all $\mathfrak{A} = (A, R^{\mathfrak{A}})$ s.t. $R^{\mathfrak{A}}$ linearly orders A without maximal element.
- (ii) C_2 the class of $\mathfrak{A} = (A, \mathbb{R}^{\mathfrak{A}})$ in which $\mathbb{R}^{\mathfrak{A}}$ is the graph of a unary function $f: A \to A$ that is injective but not surjective.
- (iii) C_3 the class of $\mathfrak{A} = (A, R^{\mathfrak{A}})$ s.t. $R^{\mathfrak{A}}$ is an equivalence relation on A with at least two equivalence classes.
- (iv) C_4 the class of all $\mathfrak{A} = (A, R^{\mathfrak{A}}) \simeq (\{1, 2, 3\}, \{(1, 2), (2, 3), (3, 1)\}).$

In at least one case, check the adequacy of your formalisation by exhibiting the semantics according to the inductive definition of the satisfaction relation.

Exercise 4 Call a formula $\varphi \in FO(\sigma)$ positive if it is generated from atomic formulae by conjunctions, disjunctions and quantifications alone (i.e., no use of (F3), or of \rightarrow or \leftrightarrow in (F4)).

Let $h: \mathfrak{A} \xrightarrow{\text{hom}} \mathfrak{B}$ be a surjective homomorphism. For an assignment β in \mathfrak{A} , $h \circ \beta$ is an assignment in \mathfrak{B} and every assignment in \mathfrak{B} may be thus obtained. Show the following by syntactic induction for all positive formulae $\varphi \in FO(\sigma)$:

$$(\mathfrak{A},\beta)\models arphi \quad \Rightarrow \quad (\mathfrak{B},h\circ\beta)\models arphi.$$

Give examples to show that surjectivity of h and positivity of φ are both necessary.

Exercise 5 Prove the following, for arbitrary $\varphi, \psi \in FO(\sigma)$ and $x, y \in Var$:

- (i) $\forall x \forall y \varphi \equiv \forall y \forall x \varphi$.
- (ii) $\exists x \forall y \varphi \models \forall y \exists x \varphi$.
- (iii) if $x \notin \text{free}(\varphi)$: $(\varphi \land \forall x\psi) \equiv \forall x(\varphi \land \psi)$.