Exercises No. 12

The first three exercises refer to the weak first-order arithmetical theory Q axiomatised by

$$
\begin{array}{ll}
\text { (Q1) } & \forall x \neg 0=x+1 \\
\text { (Q2) } & \forall x \forall y(x+1=y+1 \rightarrow x=y) \\
\text { (Q3) } & \forall x(\neg x=0 \rightarrow \exists y x=y+1) \\
\text { (Q4) } & \forall x(x+0=x) \\
\text { (Q5) } & \forall x \forall y(x+(y+1)=(x+y)+1) \\
\text { (Q6) } & \forall x(x \cdot 0=0) \\
\text { (Q7) } & \forall x \forall y(x \cdot(y+1)=(x \cdot y)+x)
\end{array}
$$

Exercise 1 Let $\underline{0}:=0$ and $\underline{n+1}:=\underline{n}+1$ be the usual representation.
(a) Show (by induction on n) that for all $n<m$ in $\mathbb{N}: Q \vdash \neg \underline{n}=\underline{m}$.
(b) Provide a representation of the addition function, by showing that the obvious definition using the given function + works as a representation.
(c) Show that the composition $h=f \circ g$ of two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ that are represented by φ_{f} and φ_{g}, respectively, is again representable.

Exercise $2 Q$ has no axioms concerning a linear ordering, but $\varphi_{\leqslant}(x, y):=\exists z(z+x=y)$ defines the usual reflexive linear ordering $\leqslant^{\mathfrak{N}}$ in the standard model \mathfrak{N}.
(a) Show (by induction on n) that $Q \vdash \forall x\left(\varphi_{\leqslant}(x, \underline{n}) \rightarrow(x=\underline{0} \vee x=\underline{1} \vee \ldots \vee x=\underline{n})\right)$.
(b) Show that $\varphi \leqslant$ represents the relation \leqslant^{n}.
(c) Show that, if $\mathfrak{A}=\left(A,+{ }^{\mathfrak{A}}, \cdot^{\mathfrak{A}}, 0^{\mathfrak{A}}, 1^{\mathfrak{A}}\right) \models Q$, the set $B:=\left\{\underline{n}^{\mathfrak{A}}: n \in \mathbb{N}\right\}$ is the universe of an induced substructure $\mathfrak{B}:=\mathfrak{A} \mid B$ that is isomorphic to (the $\{+, \cdot, 0,1\}$-reduct of) \mathfrak{N}, and ordered by φ_{\leqslant}like \mathfrak{N}.
(d) Does Q imply that $\varphi \leqslant$ defines a linear ordering of the universe? Discuss the potential differences between the relation defined by φ_{\leqslant}and by $\varphi_{\leqslant}^{\prime}(x, y):=\exists z(x+z=y)$.
Hint: try to find a non-standard interpretation of + over some universe that is not fully covered by the terms \underline{n}. E.g., look at an extension of the standard model \mathfrak{N} by an "infinite" part structured like \mathbb{Z} w.r.t. the successor $z \mapsto z+1$.
Does Q force + to be commutative?
Exercise 3 [extra] Provide a proof sketch that Q admits representations for every total recursive function, i.e., for every total function of the form $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ computed by some R-program P. For this, consider carefully how one needs to adapt and modify the formula φ_{P} we used in our proof of Tarski's theorem for the reduction of the question whether $P \in \mathrm{H}$ to whether $\varphi_{P} \in \operatorname{Th}(\mathfrak{N})$, to obtain a formula $\varphi(\mathbf{x}, z)$ that represents f not only w.r.t. to $\operatorname{Th}(\mathfrak{N})$ but even w.r.t. the much weaker Q.
NB: a straightforward modification that takes care of input/output will be good enough to achieve representation in $\operatorname{Th}(\mathfrak{N})$, and that $Q \vdash \varphi(\underline{\mathbf{m}}, f(\mathbf{m}))$, and even $Q \vdash \varphi(\underline{\mathbf{m}}, \underline{n})$ precisely for $n=f(\mathbf{m})$ (why?); but it will in general fail to satisfy the stronger functionality requirement $Q \vdash \forall z(\varphi(\underline{\mathbf{m}}, z) \rightarrow z=\underline{f(\mathbf{m})})$ (why?; what can be done about it?; and how does totality of f matter?). Think of what can go wrong in non-standard models of Q.

Exercise 4 (Löb's Theorem) Use (L1), (L2), (L3) and the existence of a fixpoint formula φ for $\psi(x):=\operatorname{prov}_{\Phi}(x) \rightarrow \eta$ to show that

$$
\Phi \vdash \operatorname{prov}_{\Phi}(\ulcorner\eta\urcorner) \rightarrow \eta \quad \Rightarrow \quad \Phi \vdash \eta .
$$

Hint: from $\Phi \vdash \varphi \rightarrow\left(\operatorname{prov}_{\Phi}(\ulcorner\varphi\urcorner) \rightarrow \eta\right)$ obtain, by applications of (L1) and (L2), that

$$
\left.\Phi \vdash \operatorname{prov}_{\Phi}(\underline{\ulcorner })\right) \rightarrow\left(\operatorname{prov}_{\Phi}\left(\left\ulcorner_{\operatorname{prov}_{\Phi}}(\underline{\ulcorner\varphi})\right\urcorner\right) \rightarrow \operatorname{prov}_{\Phi}(\underline{\ulcorner\eta})\right) .
$$

Using the assumption on η and (L1)-(L3), one obtains that $\Phi \vdash \operatorname{prov}_{\Phi}(\ulcorner\varphi\urcorner) \rightarrow \eta$, that $\Phi \vdash \varphi$, $\Phi \vdash \operatorname{prov}_{\Phi}(\underline{\ulcorner \urcorner})$, and finally $\Phi \vdash \eta$.

