Introduction to Mathematical Logic

Exercises No.12

The first three exercises refer to the weak first-order arithmetical theory Q axiomatised by

 $\begin{array}{ll} (\mathrm{Q1}) & \forall x \neg \ 0 = x + 1 \\ (\mathrm{Q2}) & \forall x \forall y (x + 1 = y + 1 \rightarrow x = y) \\ (\mathrm{Q3}) & \forall x (\neg \ x = 0 \rightarrow \exists y \ x = y + 1) \\ (\mathrm{Q4}) & \forall x (x + 0 = x) \\ (\mathrm{Q5}) & \forall x \forall y (x + (y + 1) = (x + y) + 1) \\ (\mathrm{Q6}) & \forall x (x \cdot 0 = 0) \\ (\mathrm{Q7}) & \forall x \forall y (x \cdot (y + 1) = (x \cdot y) + x) \end{array}$

Exercise 1 Let $\underline{0} := 0$ and $n + 1 := \underline{n} + 1$ be the usual representation.

- (a) Show (by induction on n) that for all n < m in \mathbb{N} : $Q \vdash \neg \underline{n} = \underline{m}$.
- (b) Provide a representation of the addition function, by showing that the obvious definition using the given function + works as a representation.
- (c) Show that the composition $h = f \circ g$ of two functions $f, g: \mathbb{N} \to \mathbb{N}$ that are represented by φ_f and φ_g , respectively, is again representable.

Exercise 2 Q has no axioms concerning a linear ordering, but $\varphi_{\leq}(x, y) := \exists z(z + x = y)$ defines the usual reflexive linear ordering $\leq^{\mathfrak{N}}$ in the standard model \mathfrak{N} .

- (a) Show (by induction on n) that $Q \vdash \forall x (\varphi_{\leq}(x, \underline{n}) \to (x = \underline{0} \lor x = \underline{1} \lor \ldots \lor x = \underline{n})).$
- (b) Show that φ_{\leq} represents the relation $\leq^{\mathfrak{N}}$.
- (c) Show that, if $\mathfrak{A} = (A, +\mathfrak{A}, \mathfrak{A}, \mathfrak{O}^{\mathfrak{A}}, \mathfrak{1}^{\mathfrak{A}}) \models Q$, the set $B := \{\underline{n}^{\mathfrak{A}} : n \in \mathbb{N}\}$ is the universe of an induced substructure $\mathfrak{B} := \mathfrak{A} \upharpoonright B$ that is isomorphic to (the $\{+, \cdot, 0, 1\}$ -reduct of) \mathfrak{N} , and ordered by φ_{\leq} like \mathfrak{N} .
- (d) Does Q imply that φ_{\leq} defines a linear ordering of the universe? Discuss the potential differences between the relation defined by φ_{\leq} and by $\varphi'_{\leq}(x, y) := \exists z(x + z = y)$. Hint: try to find a non-standard interpretation of + over some universe that is not fully

covered by the terms <u>n</u>. E.g., look at an extension of the standard model \mathfrak{N} by an "infinite" part structured like \mathbb{Z} w.r.t. the successor $z \mapsto z + 1$. Does Q force + to be commutative?

Exercise 3 [extra] Provide a proof sketch that Q admits representations for every total recursive function, i.e., for every total function of the form $f: \mathbb{N}^n \to \mathbb{N}$ computed by some R-program P. For this, consider carefully how one needs to adapt and modify the formula φ_P we used in our proof of Tarski's theorem for the reduction of the question whether $P \in H$ to whether $\varphi_P \in Th(\mathfrak{N})$, to obtain a formula $\varphi(\mathbf{x}, z)$ that represents f not only w.r.t. to $Th(\mathfrak{N})$ but even w.r.t. the much weaker Q.

NB: a straightforward modification that takes care of input/output will be good enough to achieve representation in Th(\mathfrak{N}), and that $Q \vdash \varphi(\underline{\mathbf{m}}, \underline{f}(\underline{\mathbf{m}}))$, and even $Q \vdash \varphi(\underline{\mathbf{m}}, \underline{n})$ precisely for $n = f(\mathbf{m})$ (why?); but it will in general fail to satisfy the stronger functionality requirement $Q \vdash \forall z (\varphi(\underline{\mathbf{m}}, z) \rightarrow z = \underline{f}(\underline{\mathbf{m}}))$ (why?; what can be done about it?; and how does totality of f matter?). Think of what can go wrong in non-standard models of Q.

Exercise 4 (Löb's Theorem) Use (L1), (L2), (L3) and the existence of a fixpoint formula φ for $\psi(x) := \text{prov}_{\Phi}(x) \to \eta$ to show that

$$\Phi \vdash \operatorname{prov}_{\Phi}(\ulcorner \eta \urcorner) \to \eta \quad \Rightarrow \quad \Phi \vdash \eta.$$

Hint: from $\Phi \vdash \varphi \rightarrow (\operatorname{prov}_{\Phi}(\underline{\ulcorner}\varphi \urcorner) \rightarrow \eta)$ obtain, by applications of (L1) and (L2), that

$$\Phi \vdash \operatorname{prov}_{\Phi}(\underline{\ulcorner\varphi\urcorner}) \to \left(\operatorname{prov}_{\Phi}(\underline{\ulcornerprov}_{\Phi}(\underline{\ulcorner\varphi\urcorner})\urcorner) \to \operatorname{prov}_{\Phi}(\underline{\ulcorner\eta\urcorner})\right).$$

Using the assumption on η and (L1)–(L3), one obtains that $\Phi \vdash \operatorname{prov}_{\Phi}(\underline{\ulcorner \varphi \urcorner}) \to \eta$, that $\Phi \vdash \varphi$, $\Phi \vdash \operatorname{prov}_{\Phi}(\underline{\ulcorner \varphi \urcorner})$, and finally $\Phi \vdash \eta$.