Exercises No. 11

Exercise 1 [warm-up no. 1] An FO-definable arithmetical encoding of (fixed length) tuples of natural numbers can be based on Cantor's diagonal enumeration. Consider the bijective function $D: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, where $D(k, \ell)=n$ if (k, ℓ) is the n-th element in the sequence

$$
\underbrace{(0,0)}_{\Sigma=0}, \underbrace{(0,1),(1,0)}_{\Sigma=1}, \underbrace{(0,2),(1,1),(2,0)}_{\Sigma=2}, \underbrace{(0,3),(1,2),(2,1),(3,0)}_{\Sigma=3}, \ldots
$$

obtained by listing pairs (k, ℓ) in increasing order w.r.t. their sum $\Sigma=k+\ell$ and w.r.t. increasing first component k within each such block. [Think of traversing the nodes of the $\mathbb{N} \times \mathbb{N}$ grid in a succession of northwest-to-southeast diagonal rows.]

Give an explicit definition of $D(k, \ell)$ as a function in k and ℓ. Use this to provide representations of D and its inverse $\left(p_{1}, p_{2}\right): \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ (defined by the requirement that $D\left(p_{1}(n), p_{2}(n)\right)=n$) by arithmetical formulae in \mathfrak{N}. E.g., for D, a formula $\varphi(x, y, z) \in \operatorname{FO}\left(\sigma_{\text {ar }}\right)$ such that $\mathfrak{N} \models \varphi[k, \ell, n]$ iff $n=D(k, \ell)$.
Exercise 2 [warm-up no. 2] Provide a formula $\chi(u, v, x, y)$ in $\mathrm{FO}\left(\sigma_{\text {ar }}\right)$ that defines (represents) Gödel's β-function $\beta(a, b, i)=a \bmod (1+(i+1) b)$ in \mathfrak{N} :

$$
\mathfrak{N}=\chi[a, b, c, d] \quad \text { iff } \quad d=\beta(a, b, c) .
$$

Exercise 3 Use the definability of Gödel's β-function in \mathfrak{N} to provide FO-definitions (representations) of one of the following functions over \mathfrak{N} :
(a) exponentiation: $(n, m) \mapsto n^{m}$ as a function from \mathbb{N}^{2} to \mathbb{N}.
(b) factorial: $n \mapsto n$! as a function from \mathbb{N} to \mathbb{N}.
E.g., for (a) one wants to have a formula $\varphi(x, y, z) \in \mathrm{FO}\left(\sigma_{\text {ar }}\right)$ such that for all $n, m, k \in \mathbb{N}$: $\mathfrak{N} \models \varphi[n, m, k]$ iff $k=n^{m}$.
Exercise 4 If we think of the 'halting' of a run of an R-program as eventually producing an infinite repetition of the halting configuration, then every run generates an infinite sequence of configurations that may either be

- eventually periodic (if the computation halts or goes into some non-trivial cycle), or
- eventually aperiodic (if the computation neither halts nor enters a cycle).

Define AP in analogy with the halting set H as the set of codes of those R-programs that display eventually aperiodic behaviour on empty input. Show that H and AP are recursively inseparable in the sense that there is no decidable set that contains H and is disjoint from AP. Hint: think of a reduction that modifies programs so that they either halt or display eventually aperiodic behaviour.
Exercise 5 Consider the complete FO-theory $\operatorname{Th}(\mathfrak{Z})$ of integer arithmetic,

$$
\mathfrak{Z}=\left(\mathbb{Z},+^{\mathfrak{3}}, \cdot{ }^{\mathfrak{3}}, 0^{\mathfrak{3}}, 1^{\mathfrak{3}}\right) .
$$

Show that $\operatorname{Th}(\mathfrak{Z})$ is undecidable, via a reduction of $\operatorname{Th}(\mathfrak{N})$ to $\operatorname{Th}(\mathfrak{Z})$, based on the fact that \mathbb{N} is FO-definable as a subset of \mathbb{Z} in \mathfrak{Z}. By the "four squares theorem" of elementary number theory, for all $z \in \mathbb{Z}: z \in \mathbb{N}$ iff there are $a, b, c, d \in \mathbb{Z}$ such that $z=a^{2}+b^{2}+c^{2}+d^{2}$.

Find a translation $\varphi \mapsto \varphi^{*}$ such that $\varphi \in \operatorname{Th}(\mathfrak{N})$ iff $\varphi^{*} \in \operatorname{Th}(\mathfrak{Z})$ and conclude that $\operatorname{Th}(\mathfrak{Z})$ is undecidable. The translation can be given by induction on syntax, such that, if $\varphi=\varphi(\bar{x})$ then $\varphi^{*}=\varphi^{*}(\bar{x})$ (same free variables) and for all \bar{n} over $\mathbb{N}: \mathfrak{N} \models \varphi[\bar{n}]$ iff $\mathfrak{Z} \models \varphi^{*}[\bar{n}]$.

