Exercises No.11

Exercise 1 [warm-up no. 1] An FO-definable arithmetical encoding of (fixed length) tuples of natural numbers can be based on Cantor's diagonal enumeration. Consider the bijective function $D: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, where $D(k, \ell) = n$ if (k, ℓ) is the *n*-th element in the sequence

$$\underbrace{(0,0)}_{\Sigma=0},\underbrace{(0,1),(1,0)}_{\Sigma=1},\underbrace{(0,2),(1,1),(2,0)}_{\Sigma=2},\underbrace{(0,3),(1,2),(2,1),(3,0)}_{\Sigma=3},\ldots$$

obtained by listing pairs (k, ℓ) in increasing order w.r.t. their sum $\Sigma = k + \ell$ and w.r.t. increasing first component k within each such block. [Think of traversing the nodes of the $\mathbb{N} \times \mathbb{N}$ grid in a succession of northwest-to-southeast diagonal rows.]

Give an explicit definition of $D(k, \ell)$ as a function in k and ℓ . Use this to provide representations of D and its inverse $(p_1, p_2) \colon \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ (defined by the requirement that $D(p_1(n), p_2(n)) = n$) by arithmetical formulae in \mathfrak{N} . E.g., for D, a formula $\varphi(x, y, z) \in \mathrm{FO}(\sigma_{\mathrm{ar}})$ such that $\mathfrak{N} \models \varphi[k, \ell, n]$ iff $n = D(k, \ell)$.

Exercise 2 [warm-up no. 2] Provide a formula $\chi(u, v, x, y)$ in FO(σ_{ar}) that defines (represents) Gödel's β -function $\beta(a, b, i) = a \mod(1 + (i + 1)b)$ in \mathfrak{N} :

$$\mathfrak{N} \models \chi[a, b, c, d]$$
 iff $d = \beta(a, b, c)$.

Exercise 3 Use the definability of Gödel's β -function in \mathfrak{N} to provide FO-definitions (representations) of one of the following functions over \mathfrak{N} :

- (a) exponentiation: $(n,m) \mapsto n^m$ as a function from \mathbb{N}^2 to \mathbb{N} .
- (b) factorial: $n \mapsto n!$ as a function from N to N.

E.g., for (a) one wants to have a formula $\varphi(x, y, z) \in FO(\sigma_{ar})$ such that for all $n, m, k \in \mathbb{N}$: $\mathfrak{N} \models \varphi[n, m, k]$ iff $k = n^m$.

Exercise 4 If we think of the 'halting' of a run of an R-program as eventually producing an infinite repetition of the halting configuration, then every run generates an infinite sequence of configurations that may either be

- eventually periodic (if the computation halts or goes into some non-trivial cycle), or

– eventually aperiodic (if the computation neither halts nor enters a cycle).

Define AP in analogy with the halting set H as the set of codes of those R-programs that display eventually aperiodic behaviour on empty input. Show that H and AP are *recursively inseparable* in the sense that there is no decidable set that contains H and is disjoint from AP. Hint: think of a reduction that modifies programs so that they either halt or display eventually aperiodic behaviour.

Exercise 5 Consider the complete FO-theory Th(3) of integer arithmetic,

$$\mathfrak{Z} = (\mathbb{Z}, +^3, \cdot^3, 0^3, 1^3).$$

Show that $\text{Th}(\mathfrak{Z})$ is undecidable, via a reduction of $\text{Th}(\mathfrak{N})$ to $\text{Th}(\mathfrak{Z})$, based on the fact that \mathbb{N} is FO-definable as a subset of \mathbb{Z} in \mathfrak{Z} . By the "four squares theorem" of elementary number theory, for all $z \in \mathbb{Z}$: $z \in \mathbb{N}$ iff there are $a, b, c, d \in \mathbb{Z}$ such that $z = a^2 + b^2 + c^2 + d^2$.

Find a translation $\varphi \mapsto \varphi^*$ such that $\varphi \in \text{Th}(\mathfrak{N})$ iff $\varphi^* \in \text{Th}(\mathfrak{Z})$ and conclude that $\text{Th}(\mathfrak{Z})$ is undecidable. The translation can be given by induction on syntax, such that, if $\varphi = \varphi(\bar{x})$ then $\varphi^* = \varphi^*(\bar{x})$ (same free variables) and for all \bar{n} over \mathbb{N} : $\mathfrak{N} \models \varphi[\bar{n}]$ iff $\mathfrak{Z} \models \varphi^*[\bar{n}]$.