Exercises No.1

Exercise 1 Describe *all* substructures of each of the following structures:

- (1) $\mathfrak{A}_1 := (\mathbb{N}, \mathsf{S}, 0)$ in signature $\sigma = \{f, c\}$ with a unary function symbol f and a constant symbol c, where f is interpreted as the successor function $\mathsf{S}: n \mapsto n+1$.
- (2) $\mathfrak{A}_2 := (\mathbb{N}, \mathsf{S})$, the reduct of the structure in (1) to $\sigma' = \{\mathsf{S}\}$.
- (3) $\mathfrak{A}_3 := (\mathbb{N}, \operatorname{graph}(S))$, with the graph of the successor function S as the interpretation of a binary relation symbol.
- (4) $\mathfrak{A}_4 := \mathfrak{N} = (\mathbb{N}, +^{\mathfrak{N}}, \cdot^{\mathfrak{N}}, <^{\mathfrak{N}}, 0, 1)$ in signature σ_{ar} with the standard interpretation.
- (5) $\mathfrak{A}_5 := (\mathbb{N}, +^{\mathfrak{N}}, <^{\mathfrak{N}}, 0)$ as a reduct of the structure in (4).

NB: In some cases, distinct but isomorphic substructures occur.

Exercise 2 Show that for any signature σ and σ -structure \mathfrak{A} , the set of *automorphisms* of \mathfrak{A} , i.e., the set of all isomorphisms $f: \mathfrak{A} \simeq \mathfrak{A}$, forms a group with the binary operation of composition and with the identity map on A as the neutral element. This is called the *automorphism group* of \mathfrak{A} , Aut(\mathfrak{A}).

Exercise 3 Which of the following classes of σ -structures are closed under taking homomorphic images, and under passage to substructures, respectively?

- (i) Groups in the signature $\sigma = \{\circ, e\}$.
- (ii) Groups in the signature $\sigma = \{\circ, e, -1\}$.
- (iii) Fields and 1-element rings in the signature $\sigma = \{+, \cdot, 0, 1\}$.
- (iv) Strict linear orderings in the signature $\sigma = \{<\}$.
- (v) Simple undirected graphs in the signature $\sigma = \{E\}$.

Exercise 4 Recall that a set is *countable* if it is finite or bijectively related to the set of natural numbers. Recall also that unions of countably many countable sets, as well as finite products of countable sets, are again countable. A structure is called countable if its universe is a countable set. Show the following, for any countable signature σ :

- (a) T_{σ} and FO(σ) are countable.
- (b) For any σ -structure \mathfrak{A} with universe A and any countable subset $A_0 \subseteq A$ there is a countable substructure $\mathfrak{B} \subseteq \mathfrak{A}$ with universe B such that $A_0 \subseteq B \subseteq A$.

Exercise 5 Let σ be a signature consisting of only function and constant symbols, and with $\operatorname{const}(\sigma) \neq \emptyset$. Let \mathfrak{T}_{σ} be the *free or term* σ -structure with universe T_{σ} . With a subset $V_0 \subseteq$ Var associate the set of terms $T_{\sigma}(V_0) := \{t \in T_{\sigma} : \operatorname{var}(t) \subseteq V_0\}$.

- (a) Show that $T_{\sigma}(V_0)$ is the universe of a substructure $\mathfrak{T}_{\sigma}(V_0) := \mathfrak{T}_{\sigma} \upharpoonright T_{\sigma}(V_0) \subseteq \mathfrak{T}_{\sigma}$.
- (b) Show that for any σ -structure \mathfrak{A} there is a unique homomorphism $h: \mathfrak{T}_{\sigma}(\emptyset) \xrightarrow{\text{hom}} \mathfrak{A}$.
- (c) Let $\beta_0: V_0 \to A$ be a *partial assignment* in the σ -structure \mathfrak{A} . Show that there is a unique homomorphism $h: \mathfrak{T}_{\sigma}(V_0) \xrightarrow{\text{hom}} \mathfrak{A}$ that extends β_0 [in fact: the restriction of the interpretation function of terms for any assignment that extends β_0].

Exercise 6 [extra]

Consider relational structures $\mathfrak{A} = (A, R^{\mathfrak{A}})$ with a relation R of arity r.

- (a) The structure $\mathfrak{A}_0 = (A_0, \mathbb{R}^{\mathfrak{A}_0})$ is a *weak substructure* of $\mathfrak{A}, \mathfrak{A}_0 \subseteq_w \mathfrak{A}$, if $A_0 \subseteq A$ and $\mathbb{R}^{\mathfrak{A}_0} \subseteq \mathbb{R}^{\mathfrak{A}}$. Show that homomorphic images are weak substructures of the target structure.
- (b) A weak substructure $\mathfrak{A}_0 \subseteq_w \mathfrak{A}$ is called a *core* if it is a \subseteq_w -minimal homomorphic image of \mathfrak{A} within \mathfrak{A} : there is a homomorphism $h: \mathfrak{A} \to \mathfrak{A}$ s.t. $\mathfrak{A}_0 = h(\mathfrak{A})$ and if $h': \mathfrak{A} \to \mathfrak{A}$ is any homomorphism with $h'(\mathfrak{A}) \subseteq_w \mathfrak{A}_0$ then $h'(\mathfrak{A}) = \mathfrak{A}_0$. Show the following for finite \mathfrak{A} .
 - (i) \mathfrak{A} has a core.
 - (ii) All cores of \mathfrak{A} are pairwise isomorphic.
 - (iii) Every core of \mathfrak{A} is a *retract* of \mathfrak{A} , i.e., a weak substructure $\mathfrak{A}_0 \subseteq_{w} \mathfrak{A}$ that is the image of \mathfrak{A} under some homomorphism $h: \mathfrak{A} \mapsto \mathfrak{A}$ that fixes A_0 pointwise.
- (c) \mathfrak{A} and \mathfrak{B} are called *homomorphically equivalent* if there are homomorphisms $h_1: \mathfrak{A} \to \mathfrak{B}$ and $h_2: \mathfrak{B} \to \mathfrak{A}$. Show that two finite *R*-structures are homomorphically equivalent if, and only if, their cores are isomorphic.