Lineare Algebra II 7. Übungsblatt

Fachbereich Mathematik

Dr. habil. Matthias Schneider

Dr. Silke Horn

Dipl. Math. Dominik Kremer

WS 2012/13 3./4. Dezember 2012

Gruppenübung

Aufgabe G1

Entscheiden Sie bei den folgenden Matrizen, ob sie symmetrisch, schiefsymmetrisch, unitär, orthogonal, hermitesch, selbstadjungiert, schiefhermitesch, normal oder diagonalisierbar sind.

$$\begin{aligned} M_1 &:= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & M_2 &:= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & M_3 &:= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & M_4 &:= \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \\ M_5 &:= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & M_6 &:= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} & M_7 &:= \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} & M_8 &:= \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \end{aligned}$$

Aufgabe G2

(a) Seien A eine komplexe $(n \times m)$ -Matrix und B eine komplexe $(m \times n)$ -Matrix. Zeigen Sie, dass genau dann $B = A^*$ gilt, wenn für alle $x \in \mathbb{C}^n$, $y \in \mathbb{C}^m$ bzgl. des Standardskalarprodukts gilt

$$\langle Ax, y \rangle = \langle x, By \rangle.$$

(b) Zeigen Sie: Eine $(n \times n)$ -Matrix ist genau dann normal, wenn $\langle Ax, Ay \rangle = \langle A^*x, A^*y \rangle$ für alle $x, y \in \mathbb{C}^n$ gilt.

Aufgabe G3

Wir betrachten den euklidischen Vektorraum $M_n(\mathbb{R})$ aller $(n \times n)$ -Matrizen mit dem Spur-Skalarprodukt $\langle A, B \rangle = \operatorname{Tr}(B^TA)$. Bezeichne mit $U_+ \subseteq M_n(\mathbb{R})$ die Teilmenge der symmetrischen und mit $U_- \subseteq M_n(\mathbb{R})$ die Teilmenge der schiefsymmetrischen Matrizen.

- (a) Zeigen Sie, dass U_+ und U_- lineare Teilräume sind und dass $(U_+)^{\perp} = U_-$ gilt.
- (b) Zeigen Sie, dass sich jede Matrix $A \in M_n(\mathbb{R})$ eindeutig als Summe $A = A_+ + A_-$ aus einer symmetrischen Matrix A_+ und einer schiefsymmetrischen Matrix A_- schreiben lässt.
- (c) Bestimmen Sie die orthogonalen Projektionen π_+ auf den Teilraum U_+ und π_- auf den Teilraum U_- .

Aufgabe G4

Betrachten Sie den unitären Vektorraum $M_2(\mathbb{C})$ mit dem Spur-Skalarprodukt $\langle A, B \rangle = \text{Tr}(B^*A)$. Bestimmen Sie eine Orthonormalbasis von $M_2(\mathbb{C})$, die die Matrix

$$\frac{1}{2\sqrt{2}} \begin{pmatrix} 1-i & 1+i \\ 2i & 0 \end{pmatrix}$$

enthält.

Hausübung

Aufgabe H1 (5 Punkte)

- (a) Bestimmen Sie alle komplexen $(n \times n)$ -Matrizen, die symmetrisch und schiefhermitesch sind.
- (b) Bestimmen Sie alle reellen (2×2) -Matrizen, die orthogonal und symmetrisch sind.

Aufgabe H2 (5 Punkte)

Man betrachte für $\lambda \in \mathbb{C}$

$$V(\lambda, *) = \{ A \in M_n(\mathbb{C}) \mid A^* = \lambda A \}.$$

- (a) Bestimmen Sie alle $A \in V(\lambda, *)$ für $|\lambda| \neq 1$.
- (b) Zeigen Sie: Für $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$ gibt es ein $z = z(\lambda) \in \mathbb{C}$ mit $V(\lambda, *) = z \cdot V(+1, *) = \{z \cdot A \mid A^* = A\}$ und bestimmen Sie z(-1).

Aufgabe H3 (5 Punkte)

Zeigen Sie, dass für eine reelle $(n \times n)$ -Matrix P die folgenden Aussagen äquivalent sind:

- (i) Es gilt $P^2 = P = P^T$.
- (ii) Die Matrix P ist symmetrisch und hat keine von 0 und 1 verschiedenen Eigenwerte.
- (iii) Die durch P gegebene Abbildung $\mathbb{R}^n \to \mathbb{R}^n : x \mapsto Px$ ist eine orthogonale Projektion. Hinweis: Auf welchen Teilraum projiziert P?