Lineare Algebra II 4. Übungsblatt

Fachbereich Mathematik

Dr. habil. Matthias Schneider

Dr. Silke Horn

Dipl. Math. Dominik Kremer

WS 2012/13 12./13. November

Gruppenübung

Aufgabe G1

Nehmen Sie zu folgendem "Beweis" des Satzes von Cayley-Hamilton Stellung:

$$p_A(A) = \det(A - A \cdot E) = \det(A - A) = \det(0) = 0.$$

Lösung: Der Beweis ist falsch.

In der Darstellung $p_A(\lambda) = \det(A - \lambda \cdot E)$ handelt es sich bei der Multiplikation $\lambda \cdot E$ um eine Skalarmultiplikation, d. h. eine Multiplikation der Matrix E mit dem Skalar λ , nicht um eine Multiplikation zweier Matrizen.

Aufgabe G2

Sei $A \in M_n(\mathbb{R})$ eine $n \times n$ -Matrix mit

$$-A^4 = 2A^2 + E (*)$$

- (a) Zeigen Sie, dass n gerade sein muss.
- (b) Man bestimme für gerades n eine Matrix A, welche (*) erfüllt.

Lösung:

(a) Nach Voraussetzung gilt

$$A^4 + 2A^2 + E = 0$$
.

Somit teilt das Minimalpolynom m_A das Polynom $t^4 + 2t^2 + 1 = (t^2 + 1)^2$. Folglich hat m_A keine Nullstelle in \mathbb{R} , da $(t^2 + 1)^2$ keine reelle Nullstelle hat.

Falls n ungerade wäre, hätte $P_A(t) \in \mathbb{R}[t]$ ungeraden Grad und somit (nach dem Zwischenwertsatz) eine Nullstelle in \mathbb{R} . Dies ist ein Widerspruch, da jede Nullstelle von P_A auch Nullstelle von m_A ist. Somit muss n gerade sein.

(b) Die Matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ erfüllt $A^2 = -E$ und somit auch (*). Für n = 2k $(k \ge 2)$ betrachte

$$\begin{pmatrix} A & & & \\ & A & & \\ & & \ddots & \\ & & & A \end{pmatrix}.$$

Aufgabe G3

Sei K ein Körper.

(a) Sei $X \in M_{n+m}(\mathbb{K})$ eine obere Block-Dreiecksmatrix

$$X = \left(\begin{array}{c|c} A & B \\ \hline 0 & D \end{array}\right)$$

mit Untermatrizen $A \in M_m(\mathbb{K}), B \in M_{m,n}(\mathbb{K})$ und $D \in M_n(\mathbb{K})$. Zeigen Sie, dass für die jeweiligen charakteristischen Polynome P_X, P_A und P_B gilt:

$$P_X = P_A \cdot P_D.$$

(b) Sei $\lambda \in \mathbb{K}$. Bestimmen Sie für die folgenden Matrizen jeweils das charakteristische Polynom und das Minimalpolynom:

$$A_1 = \begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \lambda \end{pmatrix}, \qquad A_2 = \begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \lambda \end{pmatrix}, \qquad A_3 = \begin{pmatrix} \lambda & 1 & \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}.$$

(c) Gilt die Aussage aus (a) auch für Minimalpolynome?

Lösung:

- (a) Die Aussage folgt direkt aus der entsprechenden Regel für Determinanten von Blockmatrizen.
- (b) In allen drei Fällen ist das charakteristische Polynom gegeben durch $P(t) = (\lambda t)^3$. Als Minimalpolynom kommen somit nur $(t \lambda), (t \lambda)^2, (t \lambda)^3$ in Frage. Man rechnet nach, dass $m_{A_1}(t) = (t \lambda), m_{A_2}(t) = (t \lambda)^2$ und $m_{A_3} = (t \lambda)^3$.
- (c) Die Aussage $m_X = m_A \cdot m_D$ ist im Allgemeinen nicht wahr; betrachte z. B. die Einheitsmatrix $E \in M_n(\mathbb{R})$ für $n \geq 2$.

Aufgabe G4

- (a) Zeigen Sie, dass ähnliche Matrizen die gleiche Determinante, die gleiche Spur und das gleiche charakteristische Polynom haben.
- (b) Zeigen Sie, dass ähnliche Matrizen das gleiche Minimalpolynom haben.
- (c) Finden Sie jeweils zwei (3×3) -Matrizen mit
 - (i) gleicher Determinante,
 - (ii) gleicher Spur,
 - (iii) gleichem charakteristischem Polynom,
 - (iv) gleichem Minimalpolynom,

die nicht ähnlich sind.

Lösung:

(a) Seien $A \in M_n(\mathbb{R})$ und $S \in GL_n(\mathbb{R})$. Dann gilt:

$$\det(S^{-1}AS) = \det(S)^{-1}\det(A)\det(S) = \det(A),$$

$$Tr(S^{-1}AS) = Tr(S^{-1}SA) = Tr(A),$$

$$P_{S^{-1}AS}(t) = \det(S^{-1}AS - tE) = \det(S^{-1}AS - tS^{-1}S) = \det(S)^{-1}\det(A - tE)\det(S) = \det(A - tE) = P_A(t).$$

- (b) Für jedes Polynom $P \in \mathbb{K}[t]$ mit P(A) = 0 gilt $P(S^{-1}AS) = S^{-1}P(A)S = 0$. Das Minimalpolynom von $S^{-1}AS$ ist somit ein Teiler des Minimalpolynoms von A. Analog ist auch das Minimalpolynom von A ein Teiler des Minimalpolynoms von $S^{-1}AS$. Somit haben A und $S^{-1}AS$ das gleiche Minimalpolynom.
- (c) Betrachte z. B. die drei Matrizen

$$A = \begin{pmatrix} 0 & & \\ & 0 & \\ & & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & \\ & 0 & \\ & & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & & \\ & 1 & \\ & & 1 \end{pmatrix}.$$

Dann gilt:

Nach (a) und (b) sind diese Matrizen paarweise nicht ähnlich. (A und B haben verschiedene Minimalpolynome, A und C bzw. B und C haben verschiedene Spur.)

Trotzdem haben alle die gleiche Determinante, A und B die gleiche Spur und das gleiche charakteristische Polynom, sowie A und C das gleiche Minimalpolynom.

Hausübung

Aufgabe H1 (5 Punkte)

Bestimmen Sie das Minimalpolynom der folgenden Matrizen mit komplexen Einträgen:

$$A = \begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4 \end{pmatrix}.$$

Lösung: Das charakteristische Polynom $P_A(t) = t^2 - t + 6$ hat keine reelle Nullstelle, also zwei verschiedene komplexe Nullstellen. Somit ist das Minimalpolynom gleich dem charakteristischen Polynom.

Das charakteristische Polynom von B ist $P_B(t) = (t-2)^3(t-3)$. Das Minimalpolynom muss also eines der drei Polynome $(t-2)(t-3), (t-2)^2(t-3)$ und $(t-2)^3(t-3)$ sein. Man rechnet nach, dass $(B-2E)(B-3E) \neq 0$, aber $(B-2E)^2(B-3E) = 0$. Somit ist $M_B(t) = (t-2)^2(t-3)$ das Minimalpolynom von B.

Aufgabe H2 (5+5 Punkte)

Seien \mathbb{K} ein Körper und $A \in M_2(\mathbb{K})$ eine 2×2 -Matrix über \mathbb{K} , deren charakteristisches Polynom $P_A \in \mathbb{K}[t]$ keine Nullstelle über \mathbb{K} hat.

- (a) Schreiben Sie das charakteristische Polynom von A als Funktion der Spur und der Determinante von A.
- (b) Man betrachte den Vektorraum $L := \text{Span}\{E, A, A^2, ...\} \subset M_2(\mathbb{K})$. Wie groß ist die Dimension dieses Vektorraums? Hinweis: Zeigen Sie, dass alle Potenzen von A als Linearkombination von A und E dargestellt werden können.
- (c) Zeigen Sie, dass $L = \text{Span}\{E,A\}$ unter Matrix multiplikation abgeschlossen ist.
- (d) Zeigen Sie, dass alle $B\in L\setminus\{0\}$ invertierbar sind und $B^{-1}\in L$ gilt.
- (e) Schließen Sie, dass L mit der üblichen Matrixmultiplikation ein Körper ist.
- (f) Mit der Identifikation $\mathbb{K} \ni a \mapsto aE \in L$ wird \mathbb{K} als Teilmenge von L aufgefasst. Analog wird $\mathbb{K}[t]$ eine Teilmenge von L[t]. Zeigen Sie, dass P_A in L[t] in Linearfaktoren zerfällt.
- (g) Begründen Sie, welchen Körper man für $\mathbb{K} = \mathbb{R}$ und

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

erhält und bestimmen Sie die Nullstellen von P_A über L.

(h) Konstruieren Sie einen Körper mit vier Elementen.

Lösung:

- (a) Setze s = Tr A und $d = \det A$. Es gilt $P_A(t) = t^2 st + d$.
- (b) Mit dem Satz von Cayley-Hamilton folgt $A^2 = sA dE$. Per Induktion kann man also alle Potenzen von A als Linearkombination von A und E darstellen. Somit gilt $L = \text{Span}\{E,A\}$ und dim L = 2. (Da P_A keine Nullstelle hat, sind A und E linear unabhängig.)
- (c) Seien $(\lambda_1 A + \lambda_2 E)$, $(\mu_1 A + \mu_2 E) \in L$ mit $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{K}$ beliebig. Dann gilt

$$(\lambda_1 A + \lambda_2 E)(\mu_1 A + \mu_2 E) = \lambda_1 \mu_1 A^2 + (\lambda_1 \mu_2 + \lambda_2 \mu_1) A + \lambda_2 \mu_2 E \in L.$$

Die Matrixmultiplikation ist somit eine Abbildung von $L \times L$ nach L.

(d) Für $\mu \in \mathbb{K}$ gilt

$$(A + \mu E)(A - (s + \mu)E) = A^2 - sA - \mu(s + \mu)E = -dE - \mu(s + \mu)E = -\underbrace{P_A(-\mu)}_{\neq 0}E$$

und somit

$$(A + \mu E)^{-1} = -\frac{1}{P_A(-\mu)}(A - (s + \mu)E) \in L.$$

Sei also $x = \lambda A + \mu E \in L \setminus \{0\}$. Falls $\lambda = 0$, gilt $x^{-1} = \mu^{-1}E \in L$. Falls $\lambda \neq 0$, gilt $x^{-1} = \lambda^{-1}(A + \lambda^{-1}\mu E)^{-1} \in L$.

(e) Axiome überprüfen (folgt alles aus den vorigen Teilaufgaben).

- (f) Nach dem Satz von Cayley-Hamilton gilt $P_A(A) = 0$; also ist $A \in L$ eine Nullstelle von P_A . Mit Polynomdivision erhält man $P_A(t) = (x A) \cdot q(t)$ mit $q \in L[t]$ und $\deg q = 1$.
- (g) Es gilt

$$L = \{aE + bA \mid a, b \in \mathbb{R}\} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M_2(\mathbb{R}) \mid a, b \in \mathbb{R} \right\}.$$

Das heißt L ist isomorph zu $\mathbb C$ via $a+ib\mapsto aE+bA$. Die Nullstellen von $P_A(t)=x^2+1$ in L sind A und -A.

(h) Betrachte $\mathbb{K} = \mathbb{Z}/2\mathbb{Z}$ und $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Dann ist $P_A(t) = t^2 + t + 1$ und hat keine Nullstelle in \mathbb{K} . Der Vektorraum $L = \operatorname{Span}\{A, E\}$ hat Dimension 2 über \mathbb{K} und somit vier Elemente.

Aufgabe H3 (5 Punkte)

Eine Matrix $A \in M_n(\mathbb{K})$ heißt nilpotent, falls es eine Zahl $k \in \mathbb{N}$ gibt mit $A^k = 0$. Zeigen Sie:

- (a) Für eine nilpotente $(n \times n)$ -Matrix $A \in M_n(\mathbb{K})$ gilt $A^n = 0$.
- (b) Eine komplexe Matrix $A \in M_n(\mathbb{C})$ ist genau dann nilpotent, wenn sie außer Null keine weiteren Eigenwerte besitzt.
- (c) Jede komplexe nilpotente Matrix ist zu einer strikten oberen Dreiecksmatrix (d. h. eine obere Dreiecksmatrix mit Nullen auf der Diagonalen) ähnlich.

Lösung:

- (a) Wegen $A^k = 0$ ist das Minimalpolynom von A ein Teiler von t^k , also von der Form $M_A(t) = t^d$ für ein $d \le k$. Außerdem ist das Minimalpolynom ein Teiler des charakteristischen Polynoms; insbesondere hat es höchstens Grad n. Somit gilt $A^d = 0$ für ein $d \le n$ und damit auch $A^n = 0$.
- (b) Ist A nilpotent mit $A^k = 0$, so ist Null ihr einziger Eigenwert, denn für $\lambda \in \mathbb{C}$ folgt aus $Ax = \lambda x$ auch $\lambda^k x = A^k x = 0$ und somit $\lambda = 0$.

Besitzt umgekehrt A nur Null als Eigenwert, so ist das charakteristische Polynom von A gegeben durch $P_A(t) = (-1)^n t^n$. Aus dem Satz von Cayley-Hamilton folgt dann $A^n = 0$.

(c) Sei A eine nilpotente Matrix. Dann ist A insbesondere nicht invertierbar. Es gibt also einen Vektor $v_1 \in \mathbb{K}^n$ mit $Av_1 = 0$. Wir ergänzen v_1 zu einer Basis mit Transformationsmatrix S_1 . Bezüglich dieser Basis hat A die Gestalt

$$S_1^{-1}AS_1 = \left(\begin{array}{c|c} 0 & B_2 \\ \hline 0 & A_2 \end{array}\right)$$

mit einer $(1 \times (n-1))$ -Matrix B_2 und einer $((n-1) \times (n-1))$ -Matrix A_2 . Weil A nilpotent ist, muss auch $S_1^{-1}AS_1$ und somit auch A_2 nilpotent sein. Analog zur vorherigen Argumentation gibt es also eine invertierbare Matrix $S_2 \in M_{n-1}(\mathbb{R})$ mit

$$S_2^{-1} A S_2 = \left(\begin{array}{c|c} 0 & B_3 \\ \hline 0 & A_3 \end{array} \right)$$

mit einer $(1 \times (n-2))$ -Matrix B_3 und einer $((n-2) \times (n-2))$ -Matrix A_3 . Damit ergibt sich dann wie beim Triagonalisierungverfahren komplexer Matrizen, dass eine nilpontente Matrix zu einer strikten oberen Dreiecksmatrix ähnlich ist.