Ordinalzahlen

Mengen, die unter \in -Vorgängern abgeschlossen sind und auf denen \in eine *Wohlordnung* induziert

$$\alpha \in \mathbf{On} := \forall x (x \in \alpha \to x \subseteq \alpha \land \dots) \in FO(\in)$$

Bsp.: $0, 1, 2, \dots, n, S(n) = n \cup \{n\}, \dots, \omega, S(\omega) = \omega \cup \{\omega\}, \dots$

On, die Klasse aller Ordinalzahlen:

- echte Klasse, keine Menge (Burali-Forti)
- ullet selbst wohlgeordnet durch \in
- unterscheide Nachfolger- und Limes-Ordinalzahlen
- Definitionen und Beweise durch transfinite Induktion

Idee: ordnungstheoretische Verallgemeinerung von $(\omega, <)$, mit ordinaler Arithmetik, wobei z.B. $S(\alpha) = \alpha + 1$ ist

L&G Sommer 2012 M Otto 54/60

transfinite Induktion über On:

- zur Definition einer Operation $\alpha \mapsto A(\alpha)$ auf **On**
- zum Nachweis einer Behauptung $A(\alpha)$ für alle $\alpha \in \mathbf{On}$

Anfang: A(0)

Nachfolger-Schritt: von $A(\alpha)$ nach $A(S(\alpha))$

Limes-Schritt: von $(A(\alpha))_{\alpha < \gamma}$ nach $A(\gamma)$

oder uniformer (und allgemeiner):

gewinne $A(\alpha)$ aus $(A(\beta))_{\beta<\alpha}$

Beispiel: ordinale Addition

L&G Sommer 2012 M Otto 55/60

Kardinalität & die Struktur des Unendlichen (Cantor)

Kardinalitätsvergleich

```
x \leq y: Existenz einer Injektion f: x \to y
(für x \neq \emptyset äq.: Surjektion g: y \to x)
```

induziert Präordnung mit Äquivalenz $x \approx y$: Existenz einer Bijektion (Satz von Cantor–Schröder–Bernstein)

- Kardinalzahlen als spezielle Ordinalzahlen: κ Kardinalzahl gdw. $\forall \alpha (\alpha < \kappa \rightarrow \kappa \not\approx \alpha)$
- Auswahlaxiom (AC)/Wohlordnungssatz:
 jede Menge bijektiv verwandt zu einer Kardinalzahl,
 Xardinalzahlen als universelle Mächtigkeitsskala

L&G Sommer 2012 M Otto 56/60

Mengen und Klassen

Formeln $\varphi(x) \in FO(\in)$ definieren im allgemeinen Klassen als Gesamtheiten von Mengen

Klassen sind entweder Mengen (Komprehensions-Ax. (SEP)) oder aber echte Klassen wie die "Allklasse" oder **On**

- $\varphi(x)$ definiert eine Menge: $\exists y \forall x (x \in y \leftrightarrow \varphi(x))$
- Mengen sind "kleine Klassen"
- (AC): Mengen sind Kardinalitäts-messbare Klassen

L&G Sommer 2012 M Otto 57/60