1 Recap on Recursive Analysis

1.1 Notions of computability for real numbers

Definition 1.1. *a)* Call $x \in \mathbb{R}$ binarily computable iff there exists a computable sequence $b_n \in \{0,1\}, n \geq -N$, (i.e. a function $b : \{-N, -N+1, \ldots, 0, 1, 2, \ldots\} \rightarrow \{0,1\}$) such that $\sum_{n=-N}^{\infty} b_n 2^{-n}$.

- b) Call $x \in \mathbb{R}$ computable iff there exists a computable integer sequence $(c_n)_n$ such that $|x c_n/2^{n+1}| \le 2^{-n}$.
- c) Let $\mathbb{D}_n := \{c/2^n \mid c \in \mathbb{Z}\}$ and $\mathbb{D} := \bigcup_n \mathbb{D}_n$ denote the set of dyadic rationals.
- *d)* Call $x \in \mathbb{R}$ Cauchy-computable iff there exist computable sequences $q_n, \varepsilon_n \in \mathbb{Q}$ such that $|x q_n| \le \varepsilon_n \to 0$ as $n \to \infty$.
- *e)* Call $x \in \mathbb{R}$ naively computable iff there exists a computable sequence $q_n \in \mathbb{Q}$ such that $q_n \to x$ as $n \to \infty$.
- f) A sequence $s_n \in \{1, 0, \overline{1}\}, n \ge -N$, is called a signed digit expansion of $\sum_{n=-N}^{\infty} s_n 2^{-n}$. Encoded over $\{0, 1\}^{\omega}$, $(bin(N), (s_n)_n)$ is a ρ_{sd} -name of x. Call a sequence $(b_n)_n$ as in a) (encoded over $\{0, 1\}^{\omega}$) a ρ_b -name of x; and $(c_n)_n$ as in b) a ρ -name of x. A pair $(q_n)_n$ and $(\varepsilon_n)_n$ of sequences as in d) is a ρ_C -name of x. A sequence $(q_n)_n$ as in e) is a ρ_n -name of x.

Lemma 1.2. a) Every binarily computable real has a computable signed digit expansion.

- b) Every real with a computable signed digit expansion is computable.
- c) Every computable real is Cauchy-computable d) and vice versa.
- e) (Cauchy-)computability implies naive computability,

Example 1.3 *a) Every rational number* $x \in \mathbb{Q}$ *is binarily computable.*

- b) $\sqrt{2}$ and π are (Cauchy-)computable real numbers.
- c) For $H \subseteq \mathbb{N}$ the Halting problem, $\sum_{n \in H} 2^{-n}$ is not binarily computable
- d) but naively computable.

1.2 Computing functions and relations on a continuous universe

Definition 1.4. *a)* A multivalued (possibly partial) function $f :\subseteq X \Longrightarrow Y$ (aka relation or multifunction) is a subset of $X \times Y$.

We write dom $(f) := \{x \in X \mid \exists y \in Y : (x, y) \in f\}$ *and* $f(x) = \{y \in Y \mid (x, y) \in f\}$ *.*

b) A Type-2 Machine has an infinite read-only input tape, an infinite one-way output tape, and an unbounded work tape.

It computes a (possibly partial) function $F :\subseteq \{0,1\}^{\omega} \rightarrow \{0,1\}^{\omega}$.

- c) A representation of a set X is a partial surjective mapping $\alpha :\subseteq \{0,1\}^{\omega} \to X$.
- *d)* Fix representations α of X and β of Y and a (possibly partial and multivalued) function $f :\subseteq X \rightrightarrows Y$.

A $(\alpha \to \beta)$ -realizer of f is a (partial but single-valued) function $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ with $f(\alpha(\bar{\sigma})) \ni \beta(F(\bar{\sigma}))$ for every $\bar{\sigma} \in \text{dom}(F) := \{\bar{\sigma} \mid \alpha(\bar{\sigma}) \in \text{dom}(f)\}.$

- e) A function as in d) is (α→β)–computable if it has a computable realizer in the sense of b). (We simply say computable if α, β are clear from context.) It is (α→β)–continuous if it has a continuous realizer.
- f) Let α_i be representations for X_i , $i \in I \subseteq \mathbb{N}$, and $\langle \cdot | \cdot \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ a computable surjective pairing function. Then $(\sigma_m)_m$ is a $(\prod_{i \in I} \alpha_i)$ -name of $(x_i)_i \in \prod_i X_i$ iff $(\sigma_{\langle i,n \rangle})_n$ is an α_i -name of $x_i \in X_i$ for every $i \in I$.
- **Example 1.5** *a)* Let α , β , γ denote representations of X, Y, Z, respectively. If $f :\subseteq X \Longrightarrow Y$ is $(\alpha \rightarrow \beta)$ –computable and $g :\subseteq Y \Longrightarrow Z$ is $(\beta \rightarrow \gamma)$ –computable, then so is their composition

$$g \circ f := \{(x,z) \mid x \in X, z \in Z, f(x) \subseteq \operatorname{dom}(g), \exists y \in Y : (x,y) \in f \land (y,z) \in g\} .$$
(1)

- b) A single-valued total real function $f : [0,1] \to \mathbb{R}$ is $(\rho \to \rho)$ -computable if some Type-2 machine can map every ρ -name $(c_n)_n$ of some $x \in [0,1]$ to a ρ -name $(c'_m)_m$ of f(y).
- *c)* Addition and multiplication are $(\rho \times \rho \rightarrow \rho)$ -computable; inversion $\mathbb{R} \setminus \{0\} \ni x \mapsto 1/x$ is $(\rho \rightarrow \rho)$ -computable.
- d) Every polynomial with computable coefficients is computable; and vice versa.
- e) Let $(a_n)_n$ denote a computable sequence, $R := 1/\limsup_n \sqrt[n]{|a_n|}$ and 0 < r < R. Then $[-r,r] \ni x \mapsto \sum_n a_n x^n$ is computable. In particular exp, $\sin, \cos, \ln(1+x)$ are computable.
- *f)* Fix $\varepsilon > 0$. The multifunction $\widetilde{\text{sgn}}_{\varepsilon} : \mathbb{R} \rightrightarrows \{-1, +1\}$ with $\varepsilon > x \mapsto -1$ and $-\varepsilon < x \mapsto +1$ is computable.
- g) Any $x \in \mathbb{R}$ is binarily computable iff it is computable.

Theorem 1.6. *a)* Every (oracle-)computable $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ is continuous.

- b) To every continuous $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$, there exists an oracle relative to which F becomes computable.
- *c)* Every oracle-computable $f : [0,1] \rightarrow \mathbb{R}$ is continuous!
- d) There exists a computable sequence of (degrees and coefficient lists of) univariate dyadic polynomials $P_n \in \mathbb{D}[X]$ with $||P_n(x) |x||| \le 2^{-n}$ on [-1, +1].
- e) Fix an oracle \mathfrak{O} . Continuous (total) $f: [0,1] \to \mathbb{R}$ is computable relative to \mathfrak{O} iff there exists a sequence $P_n \in \mathbb{D}_{n+1}[X]$ computable relative to \mathfrak{O} such that $||f P_n||_{\infty} \leq 2^{-n}$.
- *f)* To every continuous $f : \mathbb{R} \to \mathbb{R}$ there is an oracle relative to which f becomes computable.

1.3 Encoding functions and closed subsets

Definition 1.7. *a*) $A [\rho^d \rightarrow \rho]$ -name of $f \in C(\mathbb{R}^d)$ is a double sequence $P_{n,m} \in \mathbb{D}[X_1, \ldots, X_d]$ with $|f(x) - P_{n,m}(x)| \leq 2^{-n}$ for all $||x|| \leq m$.

b) A closed set $A \subseteq \mathbb{R}^d$ is computable if the function

$$\operatorname{dist}_{A}: \mathbb{R}^{d} \ni x \mapsto \min\left\{ \|x - a\| : a \in A \right\} \in \mathbb{R} \cup \{\infty\} =: \overline{\mathbb{R}}$$

$$(2)$$

is computable. A ψ^d -name of $A \in \mathcal{A}^{(d)}$ is a $[\rho^d \rightarrow \rho]$ -name of dist_A, where $\mathcal{A}^{(d)}$ denotes the space of closed subsets of \mathbb{R}^d .

c) $A \psi_{<}^{d}$ -name of A is a $(\prod_{m \in \mathbb{N}} \rho^{d})$ -name of some sequence $x_{m} \in A$ dense in A.

d) A ψ^d_{\geq} -name of A are two sequences $q_n \in \mathbb{Q}^d$ and $\varepsilon_n \in \mathbb{Q}$ such that

$$\mathbb{R}^d \setminus A = \bigcup_n B(q_n, \varepsilon_n) \quad \text{where} \quad B(x, r) := \{ y : ||x - y|| < r \} \quad . \tag{3}$$

- e) A $\rho_{<-name of x \in \mathbb{R}}$ is a sequence $(q_n) \subseteq \mathbb{Q}$ with $x = \sup_n q_n$; a $\rho_{>-name of x \in \mathbb{R}}$ is a sequence $(q_n) \subseteq \mathbb{Q}$ with $x = \inf_n q_n$.
- *f)* For representations α , β of X let $\alpha \sqcap \beta := (\alpha \times \beta) \mid^{\Delta_X}$, where $\Delta_X := \{(x, x) \mid x \in X\}$.
- g) Write $\alpha \leq \beta$ if id : $X \to X$ is $(\alpha \to \beta)$ -computable.
- h) We say that $U \subseteq X$ is α -r.e. if there exists a Turing machine which terminates precisely on input of all α -names of $x \in U$ and diverges on all α -names of $x \in X \setminus U$.

Theorem 1.8. *a*) *It holds* $\rho \leq \rho_{<} \sqcap \rho_{>} \leq \rho$.

- b) Every $(\rho \rightarrow \rho_{<})$ -computable $f : [0,1] \rightarrow \mathbb{R}$ is lower semi-continuous.
- c) A set $A \in \mathcal{A}^{(d)}$ is $\psi^d_{>}$ -computable iff $\mathbb{R}^d \setminus A$ is ρ^d -r.e.
- d) Let $\|\cdot\|$ in Equation 3 denote any fixed computable norm. Let $\|\cdot\|'$ denote some other norm and $\psi_{>}^{\prime d}$ the induced representation. Then $\psi_{>}^{d} \preceq \psi_{>}^{\prime d}$.
- e) It holds $\psi^d \leq \psi^d_{\leq} \Box \psi^d_{\geq} \leq \psi^d$. Moreover A is ψ^d_{\leq} -computable iff dist_A is $(\rho^d \rightarrow \rho_{\geq})$ -computable; and A is ψ^d_{\geq} -computable iff dist_A is $(\rho^d \rightarrow \rho_{\leq})$ -computable. In particular ψ^d -computability is invariant under a change of computable norms.
- *f)* Union $\mathcal{A}^{(d)} \times \mathcal{A}^{(d)} \ni (A, B) \mapsto A \cup B \in \mathcal{A}^{(d)}$ is $(\Psi^d \times \Psi^d \rightarrow \Psi^d)$ -computable; *but intersection is not.*
- g) Closed image $C(\mathbb{R}^d \to \mathbb{R}^k) \times \mathcal{A}^{(d)} \ni (f, A) \mapsto \overline{f[A]} \in \mathcal{A}^{(k)}$ is $([\rho^d \to \rho^k] \times \psi^d_{<}, \psi^k_{<})$ -computable.
- h) Preimage $C(\mathbb{R}^d \to \mathbb{R}^k) \times \mathcal{A}^{(k)} \ni (f, B) \mapsto f^{-1}[B] \in \mathcal{A}^{(d)}$ is $([\rho^d \to \rho^k] \times \psi_{>}^k, \psi_{>}^d)$ -computable.
- *j*) $\{\emptyset\}$ is $\psi^d_{>}|^{[0,1]^d}$ -*r.e.*

2 (In-)Computability in Linear Algebra and Geometry

Common algorithms (e.g. Gaussian Elimination) generally pertain to the Blum-Shub-Smale model (equivalently: *real-RAM*) of real computation — and lead to difficulties when implemented.

Definition 2.1. *a)* For a set $S \subseteq \mathbb{R}^d$, its convex hull is the least convex set containing S:

$$\operatorname{chull}(S) := \bigcap \left\{ C : S \subseteq C \subseteq \mathbb{R}^d, C \text{ convex} \right\}$$

A polytope is the convex hull of finitely many points, $chull(\{p_1, ..., p_N\})$. For a convex set C, point $p \in C$ is called extreme (written " $p \in ext(C)$ ") if it does not lie on the interior of any line segment contained in C:

$$p = \lambda \cdot x + (1 - \lambda) \cdot y \land x, y \in C \land 0 < \lambda < 1 \quad \Rightarrow \quad x = y$$

b) For a set X, let $\binom{X}{k} := \{\{x_1, \dots, x_k\} : x_i \in X \text{ pairwise distinct}\}$. Convex Hull, as understood in computational geometry, is the problem

$$\operatorname{extchull}_{N}: \binom{\mathbb{R}^{d}}{N} \ni \{x_{1}, \dots, x_{N}\} \mapsto \{y \text{ extreme point of } \operatorname{chull}(x_{1}, \dots, x_{N})\}$$
(4)

of identifying the extreme points of the polytope C spanned by given pairwise distinct x_1, \ldots, x_N .

c) For $1 \le j \le n$ let $g_j : \mathbb{R}^d \ni x \mapsto a_{j0} + \sum_i x_i \cdot a_{ji} \in \mathbb{R}$ $((a_{j1}, \dots, a_{jd}) \ne 0)$ denote an affine linear function and $H_j = g_j^{-1}(0)$ its induced oriented hyperplane, $H_j^+ = g_j^{-1}(0,\infty)$ the positive halfspace and $H_j^- = g_j^{-1}(-\infty, 0)$ the negative one. For $x \in \mathbb{R}^d$,

$$\pi(x) = (\operatorname{sgn} g_j(x))_{j=1,\dots,n} \in \{-1,0,+1\}^n$$

is called its position vector. A cell of $\mathcal{H} = \{H_1, \dots, H_n\}$ is a subset $\pi^{-1}(\sigma)$ of \mathbb{R}^d for some $\sigma \in \{-1, +1\}^n$. Point Location is the problem of identifying, to fixed \mathcal{H} and upon input of some point *x*, the cell that *x* lies in, i.e., of computing the function

$$\mathsf{Pointloc}_{\mathcal{H}}: \mathbb{R}^d \setminus \bigcup \mathcal{H} \to \{-1, +1\}^n, \qquad x \mapsto \pi(x) \quad . \tag{5}$$

- d) Let $\det_d : \mathbb{R}^{d \times d} \to \mathbb{R}$ denote the determinant mapping and $\operatorname{rank}_{d,k} : \mathbb{R}^{d \times k} \to \mathbb{N}$ the rank. Moreover abbreviate $\operatorname{Gr}_k(V) := \{U \subseteq V \text{ lin.subspace, } \dim(U) = k\}$ and $\operatorname{Gr}(V) = \bigcup_k \operatorname{Gr}_k(V)$. Finally, $\operatorname{GramSchmidt}_{d,k} : \operatorname{rank}_{d,k}^{-1}[k] \to \mathbb{R}^{d \times k}$ is the mapping induced by the Gram–Schmidt orthonormalization process.
- e) Consider the multifunctions

$$\mathsf{LSolve}_{d,k}: \operatorname{rank}_{d,k}^{-1}[\{0,1,\ldots,k-1\}] \ni A \mapsto \ker(A) \setminus \{0\}$$

and $\mathsf{LSolve}'_{d,k} :\subseteq \mathbb{R}^{d \times (k+1)} \ni (A, b) \mapsto \{x \, | \, A \cdot x = b\}.$

f) Consider the multifunctions $\mathsf{SomeEVec}_d : \mathbb{R}^{d \times (d+1)/2} \ni A \Rightarrow \{x \neq 0 \mid \exists \lambda : A \cdot x = \lambda x\}$ and $\mathsf{EVecBase}_d : \mathbb{R}^{d \times (d+1)/2} \ni A \Rightarrow \{O \in \mathcal{O}(\mathbb{R}^d) \mid O^{\dagger} \cdot A \cdot O = \mathsf{diag}(\cdots)\}.$

Proposition 2.2. *a*) extchull_N is discontinuous, hence incomputable;

- *b)* For any $\mathcal{H} \neq \emptyset$, Pointloc_{\mathcal{H}} is discontinuous, hence incomputable;
- *c*) det_{*d*} and GramSchmidt_{*d*,*k*} are computable;
- *d*) rank_{*d*,*k*} *is discontinuous (hence incomputable) but* ($\rho^{d \times k}$, $\rho_{<}$)–*computable.*
- e) Linear independence $\{(x_1,...,x_k) \in \mathbb{R}^{d \times k} \text{ linearly independent}\}$ is $\rho^{d \times k}$ -r.e.
- f) $\mathsf{LSolve}_{d,k}$ and $\mathsf{SomeEVec}_d$ are uncomputable.

Theorem 2.3. *a*) dim_d : Gr(\mathbb{R}^d) \rightarrow {0,1,...,*d*} *is* ($\psi^d_{<}, \rho_{<}$)–*computable b*) and ($\psi^d_{>}, \rho_{>}$)–*computable; that is,* (ψ^d, ρ)–*computable!*

- **Lemma 2.4.** *a)* The generalized determinant is $(\rho^{d \times k}, \rho)$ -computable, namely the mapping $\text{Det}_{d \times k} : \mathbb{R}^{d \times k} \ni (a_1, \dots, a_k) \mapsto \max \{ |\det(a_{j_1}, \dots, a_{j_d})| : 1 \le j_1 \le \dots \le j_d \le k \}.$
- b) $\mathbb{R}^{d \times k} \ni A \mapsto \operatorname{range}(A) \in \mathcal{A}^{(d)}$ is $(\rho^{d \times k}, \psi^d_{<})$ -computable.
- c) $\mathbb{R}^{d \times k} \ni A \mapsto \operatorname{kern}(A) \in \mathcal{A}^{(k)}$ is $(\rho^{d \times k}, \psi^k_{>})$ -computable.
- *d*) $\mathbb{R}^{d \times k} \cap \operatorname{rank}^{-1}[k] \ni A \mapsto \operatorname{range}(A) \in \mathcal{A}^{(d)}$ is $(\rho^{d \times k}, \psi^d)$ -computable.
- e) Orthogonal complement, i.e. the mapping $\operatorname{Gr}(\mathbb{R}^d) \ni L \mapsto L^{\perp} \in \operatorname{Gr}(\mathbb{R}^d)$, is both $(\Psi^d_{\leq}, \Psi^d_{\leq})$ -computable and $(\Psi^d_{\leq}, \Psi^d_{\leq})$ -computable.
- *f)* The multivalued mapping $\text{Basis}_{d,k}$: $\text{Gr}_k(\mathbb{R}^d) \ni L \Rightarrow \{B \in \mathbb{R}^{d \times k} : \text{range}(B) = L\}$ is $(\Psi^d_{\leq}, \rho^{d \times k})$ -computable.

Theorem 2.5. For fixed integers $0 \le k \le d$, the following representations of $\operatorname{Gr}_k(\mathbb{R}^d)$ are uniformly equivalent: A name of $L \in \operatorname{Gr}_k(\mathbb{R}^d)$ is

- *a*) a $\rho^{d \times k}$ -name for some basis $x_1, \ldots, x_k \in \mathbb{R}^d$ for L;
- b) same for an orthonormal basis;
- c) a $\rho^{d \times m}$ -name ($m \in \mathbb{N}$ arbitrary) for some real $d \times m$ -matrix B with L = range(B);
- d) a ψ_{\leq}^{d} -name of d_{L} , i.e., approximations to d_{L} from above
- e) a $\psi_{>}^{d}$ -name of d_{L} , i.e., approximations to d_{L} from below
- *f)* a $\rho^{m \times d}$ -name ($m \in \mathbb{N}$ arbitrary) for some real $m \times d$ -matrix A with L = kern(A);

a')-f') similarly, but for $L' := L^{\perp}$ and k' := d - k instead of L and k.

Fact 2.6 (E. Specker 1967) Let $\mathbb{C}_d[Z]$ denote the vector space of monic polynomials of degree d. The mapping $\mathbb{C}^d \ni (z_1, \ldots, z_d) \mapsto \prod_{j=1}^d (Z - z_j) \in \mathbb{C}_d[Z]$ has a computable multivalued inverse.

Lemma 2.7. *a)* For $d \in \mathbb{N}$, given $x, y_1, \ldots, y_d \in \mathbb{R}$ and $v := \text{Card}\{1 \le i \le d : x = y_i\}$, one can compute (i_1, \ldots, i_v) with $1 \le i_1 < \cdots < i_v \le d$ and $x = y_{i_1} = \cdots = y_{i_v}$.

b) Given $x_1, \ldots, x_d \in \mathbb{R}$ and $k := \operatorname{Card}\{x_1, \ldots, x_d\}$, one can compute $v_1, \ldots, v_d \in \mathbb{N}$ with $v_j = \operatorname{Card}\{i : 1 \le i \le d, x_i = x_j\}$. **Theorem 2.8.** *a)* Given a $\rho^{d \cdot (d-1)/2}$ -name of a symmetric real $d \times d$ -matrix A,

a *d*-tuple $(\lambda_1, \ldots, \lambda_d)$ of its eigenvalues with multiplicities is multivalued ρ^d -computable.

- b) Given a $\rho^{d \cdot (d-1)/2}$ -name of a symmetric real $d \times d$ -matrix A and given its number Card $\sigma(A)$ of distinct eigenvalues, one can diagonalize A in the sense of $\rho^{d \times d}$ -computing an orthonormal basis of eigenvectors.
- c) Given a $\rho^{d \cdot (d-1)/2}$ -name of a symmetric real $d \times d$ -matrix A and given the integer

 $\lfloor \log_2 m \rfloor$, where $m(A) := \min \{\dim \ker(A - \lambda \cdot id) : \lambda \in \sigma(A)\} \in \{1, \dots, d\}$

denotes the multiplicity of some least-degenerate eigenvalue, one can ρ^d -compute some eigenvector of A.

Definition 2.9. For $1 \le k \le d$ integers let $Class_{d,k}(x_1,...,x_d) := \{j : 1 \le j \le d, x_j = x_k\}$ and consider the multivalued mapping

$$\mathsf{SomeClass}_d : \mathbb{R}^d \ni (x_1, \dots, x_d) \mapsto \big\{ \mathsf{Class}_{d,k}(x_1, \dots, x_d) : 1 \le k \le d \big\}$$

yielding, for some k, the set of all indices i with $x_i = x_k$.

Lemma 2.10. Let $x_1, \ldots, x_d \in \mathbb{R}$ and $m := \min_{1 \le k \le d} \text{Card } \text{Class}_{d,k}(x)$ as above.

- a) For each $1 \le k, \ell \le d$ it either holds $Class_{d,\ell}(x) = Class_{d,k}(x)$ or $Class_{d,\ell}(x) \cap Class_{d,k}(x) = \emptyset$. Also, $\bigcup_k Class_{d,k}(x) = [d]$.
- *b)* Consider $I \subseteq [d]$ such that

$$x_i \neq x_j$$
 for all $i \in I$ and all $j \in [d] \setminus I$. (6)

Then $I \cap \text{Class}_{d,k}(x) \neq \emptyset$ implies $\text{Class}_{d,k}(x) \subseteq I$. Moreover $1 \leq \text{Card}(I) < 2m$ implies $I = \text{Class}_{d,k}(x)$ for some k.

- c) Suppose $k \in \mathbb{N}$ is such that $k \leq m < 2k$. Then there exists ℓ such that $I := \text{Class}_{d,\ell}(x)$ satisfies (6) and has $k \leq \text{Card}(I) < 2k$. Conversely every $I \subseteq [d]$ with $k \leq \text{Card}(I) < 2k$ satisfying (6) has $I = \text{Class}_{d,\ell}(x)$ for some ℓ .
- *d)* Given a ρ^d -name of (x_1, \ldots, x_d) and given $k \in \mathbb{N}$ with $k \le m < 2k$, one can computably find some $\text{Class}_{d,\ell}(x)$.

3 Continuity for Multivalued Functions

Definition 3.1. Let (X,d) and (Y,e) denote metric spaces and abbreviate $B(x,r) := \{x' \in X : d(x,x') < r\} \subseteq X$ and $\overline{B}(x,r) := \{x' \in X : d(x,x') \leq r\}$; similarly for Y. Now fix some $f :\subseteq X \rightrightarrows Y$ and call $(x,y) \in f$ a point of continuity of f if the following formula holds:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x' \in B(x, \delta) \cap \operatorname{dom}(f) \ \exists y' \in B(y, \varepsilon) \cap f(x')$$

a) Call f strongly continuous if every $(x, y) \in f$ is a point of continuity of f:

 $\forall x \in \operatorname{dom}(f) \ \forall y \in f(x) \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x' \in B(x, \delta) \cap \operatorname{dom}(f) \ \exists y' \in B(y, \varepsilon) \cap f(x').$

Fig. 1. a) For a relation *g* (dark gray) to tighten *f* (light gray) means no more freedom (yet the possibility) to choose some $y \in g(x)$ than to choose some $y \in f(x)$ (whenever possible). b) Illustrating ε - δ -continuity in (x, y) for a relation (black)

- b) Call f weakly continuous if the following holds: $\forall x \in \text{dom}(f) \exists y \in f(x) \forall \varepsilon > 0 \exists \delta > 0 \forall x' \in B(x, \delta) \cap \text{dom}(f) \exists y' \in B(y, \varepsilon) \cap f(x').$
- c) Call f uniformly weakly continuous if the following holds:

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \operatorname{dom}(f) \ \exists y \in f(x) \ \forall x' \in B(x,\delta) \cap \operatorname{dom}(f) \ \exists y' \in B(y,\varepsilon) \cap f(x').$

d) Call f nonuniformly weakly continuous if the following holds:

 $\forall \varepsilon > 0 \ \forall x \in \operatorname{dom}(f) \ \exists \delta > 0 \ \exists y \in f(x) \ \forall x' \in B(x, \delta) \cap \operatorname{dom}(f) \ \exists y' \in B(y, \varepsilon) \cap f(x').$

e) Call f Henkin-continuous if the following holds:

$$\begin{pmatrix} \forall \varepsilon > 0 & \exists \delta > 0 \\ \forall x \in \operatorname{dom}(f) & \exists y \in f(x) \end{pmatrix} \quad \forall x' \in B(x, \delta) \cap \operatorname{dom}(f) \quad \exists y' \in B(y, \varepsilon) \cap f(x') \quad .$$
(7)

f) Some $g :\subseteq X \Longrightarrow Y$ tightens f (and f loosens g) if both dom $(f) \subseteq$ dom(g) and $\forall x \in$ dom $(f) : g(x) \subseteq f(x)$ hold.

Fig. 2. a) Example of a uniformly weakly continuous but not weakly continuous relation. b) A semi-uniformly strongly continuous relation which is not uniformly strongly continuous. c) A compact, weakly and uniformly weakly continuous relation which is not computable relative to any oracle.

Lemma 3.2. *a) Let* f *be uniformly weakly continuous and suppose that* f *is pointwise compact in the sense that* $f(x) \subseteq Y$ *is compact for every* $x \in X$ *. Then* f *is weakly continuous.*

- b) Let f be nonuniformly weakly continuous and dom(f) compact. Then f is uniformly weakly continuous.
- c) If f is Henkin-continuous and tightens g, then also g is Henkin-continuous.
- *d)* If f and $g :\subseteq Y \rightrightarrows Z$ are Henkin-continuous, then so is $g \circ f :\subseteq X \rightrightarrows Z$.
- e) A function $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ is an (α,β) -realizer of f iff F tightens $\beta^{-1} \circ f \circ \alpha$ iff $\beta \circ F \circ \alpha^{-1}$ tightens f.
- f) If range $(f) \subseteq dom(g)$ holds and if both f and g map compact sets to compact sets, then so does $g \circ f$.

Proposition 3.3. *a)* The inverse ρ_b^{-1} : $[0,1] \Rightarrow \{0,1\}^{\omega}$ of the binary representation restricted to [0,1] *is not weakly continuous.*

b) Every $x \in \mathbb{R}$ has a signed digit expansion

$$x = \sum_{n=-N}^{\infty} a_n 2^{-n}, \qquad a_n \in \{0, 1, \bar{1}\}$$
(8)

with no consecutive digit pair $11 \text{ nor } \overline{11} \text{ nor } 1\overline{1} \text{ nor } \overline{11}$.

- c) For $k \in \mathbb{N}$, each $|x| \leq \frac{2}{3} \cdot 2^{-k}$ admits such an expansion with $a_n = 0$ for all $n \leq k$. And, conversely, $x = \sum_{n=k+1}^{\infty} a_n 2^{-n}$ with $(a_n, a_{n+1}) \in \{10, \overline{1}0, 01, 0\overline{1}, 00\}$ for every nrequires $|x| \leq \frac{2}{3} \cdot 2^{-k}$. d) Let $x = \sum_{n=-N}^{\infty} a_n 2^{-n}$ be a signed digit expansion and $k \in \mathbb{N}$
- d) Let x = ∑_{n=-N}[∞] a_n2⁻ⁿ be a signed digit expansion and k ∈ N such that (a_n, a_{n+1}) ∈ {10, 10, 01, 01, 00} for each n > k. Then every x' ∈ [x - 2^{-k}/3, x + 2^{-k}/3] admits a signed digit expansion x' = ∑_{n=-N}[∞] b_n2⁻ⁿ with a_n = b_n∀n ≤ k.
 d) Let Σ := {0, 1, 1, .}.
 - The inverse ρ_{sd}^{-1} : $\mathbb{R} \rightrightarrows \Sigma^{\omega}$ of the signed digit representation is Henkin-continuous.

Theorem 3.4. Let $K \subseteq \mathbb{R}$ be compact and $f : K \rightrightarrows \mathbb{R}$ computable relative to some oracle. *Then f is Henkin-continuous.*

Example 3.5 A compact total Henkin–continuous but not relatively computable relation. (Dashed lines indicate alignment and are not part of the graph)

4 Computational Complexity

Definition 4.1. Call $f : [0,1] \to \mathbb{R}$ computable in time t(n) and space s(n) if some Turing machine can, upon input of every ρ_{sd} -name of every $x \in \text{dom}(f)$ and of n in unary, produce within these ressource bounds some $c \in \mathbb{Z}$ such that $|f(x) - c/2^{n+1}| \le 2^{-n}$.

Lemma 4.2. If f is (even oracle-) $(\rho_{\mathbb{D}}, \rho_{\mathbb{D}})$ -computable in time t(n), then $\mu : \mathbb{N} \ni n \mapsto t(n+2) \in \mathbb{N}$ constitutes a modulus of uniform continuity to f, i.e., $|x - x'| \le 2^{-\mu(n)} \Rightarrow |f(x) - f(x')| \le 2^{-n}$.

Example 4.3 The following function is computable in exponential time, but not in polynomial time — and oracles do not help: $f: (0,1] \ni x \mapsto 1/\ln(e/x) \in (0,1], \quad f(0) = 0.$

Fig. 3. a) (Part of) the graph of $f(x) = 1/\ln(e/x)$ from Example 4.3 demonstrating its exponential rise from 0. b) Lower bound techniques in real function computation; $H \subseteq \mathbb{N}$ is the Halting problem and $\mathbb{N} \supseteq E \in \mathsf{EXP} \setminus \mathcal{P}$.

In particular functional evaluation $(f, x) \mapsto f(x)$ is not computable within time bounded only in *n*, the output precision, even when restricting to smooth functions $f : [0, 1] \to [0, 1]$.

5 Recap on Blum-Shub-Smale (BSS) Machines

A BSS machine \mathbb{M} (over \mathbb{R}) can in each step add, subtract, multiply, divide, and branch on the result of comparing two reals. Its memory consists of an infinite sequence of cells, each capable of holding a real number and accessed via two special index registers (similar to a two-head Turing machine). A program for \mathbb{M} may store a finite number of real constants. The notions of *decidability* and *semi-decidability* translate straightforwardly from discrete $L \subseteq \{0,1\}^*$ and $L \subseteq \mathbb{N}^*$ to real languages $\mathbb{L} \subseteq \mathbb{R}^*$. Computing a function $f :\subseteq \mathbb{R}^* \to \mathbb{R}^*$ means that the machine, given $x \in \text{dom}(f)$, outputs f(x) within finitely many steps and terminates while diverging on inputs $x \notin \text{dom}(f)$.

Example 5.1 *a)* rank : $\mathbb{R}^{n \times m} \to \mathbb{N}$ is uniformly BSS–computable (in time $\mathbb{O}(n^3 + m^3)$)

- b) The multivalued mapping $\mathbb{R}^{n \times m} \ni A \Rightarrow \{(b_1, \ldots) \text{ basis of } \operatorname{kern}(A)\} \in \mathbb{R}^{m \times *}$ is uniformly BSS-computable (in time $O(n^3 + m^3)$).
- c) The multivalued mapping $\mathbb{R}^{n \times m} \ni A \Rightarrow \{(c_1, \ldots) \text{ basis of } \operatorname{range}(A)\} \in \mathbb{R}^{n \times *}$ is uniformly BSS-computable (in time $\mathcal{O}(n^3 + m^3)$).
- *d)* The graph of the square root function is BSS–decidable.
- e) \mathbb{Q} is BSS semi-decidable; and so is the set \mathbb{A} of algebraic reals.
- *f)* The algebraic degree function deg : $\mathbb{A} \to \mathbb{N}$ is BSS–computable.
- g) A language $\mathbb{L} \subseteq \mathbb{R}^*$ is BSS semi-decidable iff $\mathbb{L} = \operatorname{range}(f)$ for some total computable $f : \mathbb{R}^* \to \mathbb{R}^*$.
- *h*) The real Halting problem \mathbb{H} is not BSS–decidable, where

 $\mathbb{H} := \{ \langle \mathbb{M}, x \rangle : BSS \text{ machine } \mathbb{M} \text{ terminates on input } x \}$

Definition 5.2. *Fix a field* $F \subseteq \mathbb{R}$ *and* $d \in \mathbb{N}$ *. A set*

$$\mathbb{B} = \{x \in \mathbb{R}^d : p_1(x) = \ldots = p_k(x) = 0 \land q_1(x) > 0 \land \ldots \land q_\ell(x) > 0\}$$
(9)

of solutions to a finite system of polynomial (in)equalities with $p_1, \ldots, p_k, q_1, \ldots, q_\ell \in F[X_1, \ldots, X_d]$ is called basic semi-algebraic over F.

A subset of \mathbb{R}^d semi-algebraic over F is a finite union of ones that are basic semi-algebraic over F. It is countably semi-algebraic over F if the union involves countably many members, all being basic semi-algebraic over F.

If is known that every basic semi-algebraic set has at most finitely many connected components.

Lemma 5.3. For $f :\subseteq \mathbb{R}^* \to \mathbb{R}^*$, and $c_1, \ldots, c_j \in \mathbb{R}$, consider the following claims:

- *a) f* is computable by a BSS Machine with constants $c_1, \ldots, c_j \in \mathbb{R}$.
- b) There is an integer sequence $(d_n)_n$ such that dom $(f) = \biguplus_n \mathbb{B}_n$ is the countable disjoint union of sets $\mathbb{B}_n \subseteq \mathbb{R}^{d_n}$ semi-algebraic over field extension $F := \mathbb{Q}(c_1, \ldots, c_j)$, and each restriction $f|_{\mathbb{B}_n}$, $n \in \mathbb{N}$, a quolynomial with coefficients from F.
- c) There exists $c_{j+1} \in \mathbb{R}$ such that f is computable by a BSS Machine with constants $c_1, \ldots, c_j, c_{j+1}$.

Then a) implies b) implies c).

Corollary 5.4. *a)* The square root function $[0, \infty) \ni x \mapsto \sqrt{x} \ge 0$ is not BSS–computable.

- *b)* The sequence $\mathbb{N} \ni n \mapsto e^{\sqrt{n}}$ is not BSS–computable.
- c) \mathbb{Q} and \mathbb{A} are not BSS-decidable

d) nor is real integer linear programming $\{\langle A, b \rangle \mid A \in \mathbb{R}^{n \times m}, b \in \mathbb{Z}^m, \exists x \in \mathbb{Z}^n : A \cdot x = b\}.$

Fact 5.5 (Lindemann–Weierstraß) Let a_1, \ldots, a_n be algebraic yet linearly independent over \mathbb{Q} . Then e^{a_1}, \ldots, e^{a_n} are algebraically independent over \mathbb{Q} .

6 Post's Problem over the Reals

Proposition 6.1. *a)* Let $x \in \mathbb{R}$, $\varepsilon > 0$, $N \in \mathbb{N}$. There exists $a \in \mathbb{A}$ of deg(a) = N with $|x - a| < \varepsilon$.

- *b)* Let $f : \operatorname{dom}(f) \subseteq \mathbb{R} \to \mathbb{R}$ be analytic and non-constant, $T \subseteq \operatorname{dom}(f)$ uncountable. Then, f maps some $x \in T$ to a transcendental value, that is, $f(x) \notin \mathbb{A}$.
- c) Fix non-constant $f = p/q \in \mathbb{R}(X)$ with polynomials p, q of $\deg(p) < n$, $\deg(p) < m$. Let $a_1, \ldots, a_{n+m} \in \operatorname{dom}(f)$ be distinct real algebraic numbers with $f(a_1), \ldots, f(a_{n+m}) \in \mathbb{Q}$. There are co-prime polynomials \tilde{p}, \tilde{q} of $\deg(\tilde{p}) < n$, $\deg(\tilde{q}) < m$ with coefficients in the algebraic field extension $\mathbb{Q}(a_1, \ldots, a_{n+m})$ such that, for all $x \in \operatorname{dom}(f) = \{x : q(x) \neq 0\} \subseteq \mathbb{R}$, it holds $f(x) = \tilde{f}(x) := \tilde{p}(x)/\tilde{q}(x)$.
- d) Continuing c), let $d \ge \max_i \deg(a_i)$. Then $f(x) \notin \mathbb{Q}$ for all transcendental $x \in \operatorname{dom}(f)$ as well as for all $x \in \mathbb{A}$ of $\operatorname{deg}(x) > D := d^{n+m} \cdot \max\{n-1, m-1\}$.

Theorem 6.2. The set \mathbb{Q} of rationals is semi-decidable and undecidable yet strictly 'easier' than \mathbb{H} : A remains undecidable to a machine with oracle access to \mathbb{Q} .

7 Computable Analysis vs. Algebraic Computability

Theorem 7.1. *a)* Let $f :\subseteq \mathbb{R}^k \to \mathbb{R}$ be continuous and computable by a BSS machine \mathfrak{M} without real constants. Then f is $(\rho^k \to \rho)$ -computable with oracle access to the Halting problem.

b) To every ℓ there exists a C^{ℓ} total function $f : [0,1] \to \mathbb{R}$ computable by a constant-free BSS machine which is not $(\rho \to \rho)$ -computable.

Fig. 4. A piecewise linear and a C^k unit pulse, and a non-overlapping superposition by scaled shifts

References

- 1. M. ZIEGLER, V. BRATTKA: "Computability in Linear Algebra"; pp.187–211 in *Theoretical Computer Science* vol.**326** (2004).
- M. ZIEGLER: "Real Computation with Least Discrete Advice: A Complexity Theory of Nonuniform Computability", pp.1108–1139 in Annals of Pure and Applied Logic vol.163:8 (2012).
- 3. A. PAULY, M. ZIEGLER: "Relative Computability and Uniform Continuity of Relations", arXiv:1105.3050
- 4. L. BLUM, F. CUCKER, M. SHUB, S. SMALE: "Complexity and Real Computation", Springer (1998).
- 5. W.M. KOOLEN, M. ZIEGLER: "Kolmogorov Complexity Theory over the Reals", pp.153–169 in *Proc. 5th Int. Conf. on Computability and Complexity in Analysis*, Electronic Notes in Theoretical Computer Science vol.**221** (2008).
- 6. V. BRATTKA, P. HERTLING, K. WEIHRAUCH: "Tutorial on Computable Analysis", pp.425–491 in New Computational Paradigms (2008).
- 7. K. WEIHRAUCH: "Computable Analysis", Springer (2000).
- 8. P. BOLDI, S. VIGNA: "Equality is a Jump", pp.49-64 in Theoretical Computer Science vol.219 (1999).
- 9. K. MEER, M. ZIEGLER: "An Explicit Solution to Post's Problem over the Reals", pp.3–15 in *Journal of Complexity* vol.24 (2008).