1 Recap on Recursive Analysis

1.1 Notions of computability for real numbers

Definition 1.1. a) Call x< R binarily computable iff there exists a computable sequengech
{0,1},n>—N, (i.e.afunctionb{—N,—-N+1,...,0,1,2,...} — {0,1}) such thaty __ bn2™".
b) Call xe R computable iff there exists a computable integer sequefwg,
such thatx — ¢, /21| < 27",
c) LetD,:={c/2"|ce Z} andD :=|J,Dn denote the set afyadic rationals.
d) Call xe R Cauchy-computable iff there exist computable sequencgseq € Q
such thatx—qgn| <&, — 0as n— co.
e) Call xe R naively computable iff there exists a computable sequengecqQ
such that g — x as n— .
f) A sequencenss {1,0,1}, n> —N, is called asigned digit expansion of S\ Shi2 ™"
Encoded ovef0,1}%, (bin(N), (sn),) is apsq—name of x.
Call a sequencéby), as in a) (encoded ovei0, 1}*) a p,—hame of x;
and(cy), as in b) ap—name of x.
A pair (gn), and(gn), of sequences as in d) isg—name of x.
A sequencéqy), as in e) is app—name of x.

Lemma 1.2. a) Every binarily computable real has a computable signept @xpansion.
b) Every real with a computable signed digit expansion ispatable.

c) Every computable real is Cauchy-computable d) and vicsave

e) (Cauchy-)computability implies naive computability,

Example 1.3 a) Every rational number x Q is binarily computable.
b) v/2 andmtare (Cauchy-)computable real numbers.

c) For H C N the Halting problemy ,.; 27" is not binarily computable
d) but naively computable.

1.2 Computing functions and relations on a continuous univese

Definition 1.4. a) Amultivalued (possibly partial) function fC X =Y (akarelation or mul-
tifunction) is a subset of X Y.
We writedom(f) ;== {xe X |dyeY:(xy) e f}and f(x) ={yeY | (xy) € f}.

b) AType-2 Machine has an infinite read-only input tape, an infinite one-way atitppe, and
an unbounded work tape.
It computes a (possibly partial) function:E {0,1}® — {0,1}.

c) Arepresentation of a set X is a partial surjective mappirng:C {0,1}® — X.

d) Fix representationst of X and of Y and a (possibly partial and multivalued) function
f:CX=2Y.
A (a—B)-realizer of f is a (partial but single-valued) function € {0,1}* — {0,1}* with

f(a(o)) 2 B(F(0)) for everyo € dom(F) := {0 | a(0) € dom(f)}.



e) A function as in d) i$a — )—computable if it has a computable realizer in the sense of b).
(We simply sagomputable if a, 3 are clear from context.) It isa — B)—continuous if it has
a continuous realizer.

f) Leta; be representations foriXi € | C N, and(-|-) : N x N — N a computable surjective
pairing function. Ther{or,) , is a (ie ai)—name ofx), € i X iff (o} n), is anai—name
of x € X; for every ie I.

Example 1.5 a) Leta, 3,ydenote representations of X Z, respectively. If {C X =Y is(a—
B)—computable and gZ Y = Z is (B — y)—computable, then so is their composition

gof = {(x2)|xeX,zeZ,f(x) Cdom(g), IyeY:(xy)e fA(v,2 g} . (1)

b) A single-valued total real function:f[0,1] — R is (p — p)—computable if some Type-2 ma-
chine can map eveny—name(cy), of some x [0, 1] to ap—name(cy,),, of f(y).

c) Addition and multiplication arép x p— p)—computable;
inversionR \ {0} > x+— 1/xis (p— p)—computable.

d) Every polynomial with computable coefficients is comipleteand vice versa.

e) Let(an), denote a computable sequence=R/limsup, {/|a, and0O < r < R. Ther{—r,r] >
X 5 anX" is computable. In particulaexp, sin, cos In(1+ x) are computable.

n
f) Fix € > 0. The multifunctiorsgn, : R = {—1,+1} withe > x— —land —e < x+— +1is
computable.
g) Any xe R is binarily computable iff itis computable.

Theorem 1.6. a) Every (oracle-)computable = {0,1}® — {0,1}% is continuous.

b) To every continuous EC {0,1}® — {0,1}%, there exists an oracle relative to which F be-
comes computable.

c) Every oracle-computable:fl0,1] — R is continuous!

d) There exists a computable sequence of (degrees and meflists of) univariate dyadic
polynomials R € D[X] with ||Pn(x) — [X||| < 27" on[-1,+1].

e) Fix an oracleO. Continuous (total) f [0,1] — R is computable relative t® iff there exists
a sequence = Dny1[X] computable relative t@® such thaf| f — Pylje < 27"

f) To every continuous fR — R there is an oracle relative to which f becomes computable.

1.3 Encoding functions and closed subsets

Definition 1.7. a) A[p— p]-name of fe C(RY) is a double sequence
Pom € DXy, ..., Xg] With | f(X) — Pam(X)| < 27" for all ||x|| < m.
b) A closed set A RY is computabléf the function

dista: R? 5 x > min{|x—al:ac A} € RU{w} = R )

is computable. A)®—name of Ac AW is a [p?— p]-name oflista,
whereA(@ denotes the space of closed subsef&®%f

c) Ayf-name of A is  [men P?)—name of some sequencg A dense in A.



d) Ayd—name of A are two sequences€iQ® ande, € Q such that

RINA = J B(an,en) where Bxr):={y:[x-yl|<r} . (3)

e) Ap-—name of xc R is a sequencégn) C Q with x=sup,qn;

ap-—name of xc R is a sequencégn) C Q with x=inf,qn.
f) For representations:,3 of X letaMp:= (a x B)}AX, whereAy := {(x,X) | x € X}.
g) Writea < Bifid : X — X is (a — )—computable.

h) We say that UC X is a—r.e. if there exists a Turing machine which terminates igedg on
input of alla—names of x U and diverges on ali—hames of x X \ U.

Theorem 1.8. a) It holdsp < p-Mp- < p.
b) Every(p— p-)—computable f [0,1] — R is lower semi-continuous.
c) Aset Ac AW isyd—computable iffRY\ A ispi—r.e.

d) Let| - | in Equation 3 denote any fixed computable norm.|L€f denote some other norm
andy the induced representation. Thef < /9.

e) It holdsyd < yd ryd < yod.

Moreover A isj2—computable iffdista is (p? — p- )—computable;

and A isyd—computable iffdisty is (p¢— p-)—computable.

In particular y9—computability is invariant under a change of computablems
f) Union A x A@ 5 (A B)— AUB e A@ is (g9 x gd — y9)—computable;

but intersection is not.

g) Closedimage RY—R¥) x A 5 (f,A) — F[A] e AKX is ([pd— p¥] x yd, Yk )—computable.
h) Preimage GRY—R*) x AK® 5 (f,B)— f 1Bl € A9 is ([pd— pX] x yX, yd)—computable.

) {0}isye|®¥ re.

2 (In-)Computability in Linear Algebra and Geometry

Common algorithms (e.g. Gaussian Elimination) generadiytgin to the Blum-Shub-Smale
model (equivalentlyreal-RAM) of real computation — and lead to difficulties when imple-
mented.

Definition 2.1. a) For a set SC RY, its convex hullis the least convex set containing S:
chull(S) := ({C:SCCCRYC conve} .

A polytopeis the convex hull of finitely many pointhull({p1,...,pn}). For a convex setC,
point pe C is calledextreme(written “p € ext(C)”) if it does not lie on the interior of any
line segment contained in C:

P=A-X+(1-A)-YyAXYeECAO<A<1 = X

y .



b) ForasetX, Iet()li) = {{X¢,..., %} 1% € X pairwise distinc}. Convex Hull, as understood
in computational geometry, is the problem

d
extchully : <E§) > {x1,....xn} — {y extreme point othull(xq,...,xn)} 4)

of identifying the extreme points of the polytope C spanyagiden pairwise distincty. .., XN.

c) For1 < j <n let g ‘RIS x— ajo+ 3% -aji € R ((aj1,...,ajd) # 0) denote an affine
linear function and H = gj‘l(O) itsinduced oriented hyperplane;H: gj‘l(O, ) the positive
halfspace and H = gj’l(—oo,O) the negative one. Forg RY,

nY) = (songi(¥), , € {-10+1"

is called itsposition vector. Acell of 5 = {Hy,...,H,} is a subsetit *(0) of RY for some
o € {—1,+1}". Point Location is the problem of identifying, to fixédl and upon input of
some point x, the cell that x lies in, i.e., of computing thecfion

Pointlocye : RO\ [ JH — {~1,+1}", x> T(X) . (5)
d) Letdet : R9*¢ — R denote the determinant mapping amahk; i : Rk — N the rank.
Moreover abbreviat&r (V) := {U CV lin.subspacedim(U) =k} andGr(V) = U, Gr(V).

Finally, GramSchmidtq x : rankgi[K] — R9*K is the mapping induced by the Gram—Schmidt
orthonormalization process.

e) Consider the multifunctions
LSolveq : rank;i[{0,1,...,k—1}] > A= ker(A) \ {0}

andLSolvey :C RI**kFD 5 (A b) = {x| A-x=b}.
f) Consider the multifunctionSomeEVecq : R9*(@+1/2 5 A Ix=£ 0| 3A: A-x = Ax} and
EVecBaseq : R9*(4+D/2 5 A fO € O(RY) | OT-A-O=diag---)}.




Proposition 2.2. a) extchully is discontinuous, hence incomputable;

b) For anyXH +# 0, Pointlocy, is discontinuous, hence incomputable;

c) dey and GramSchmidtq x are computable;

d) ranky k is discontinuous (hence incomputable) bpit<K, p-)—computable.
e) Linear independencé (i, ..., %) € R linearly independerit is p*k-r.e.
f) LSolveq x andSomeEVecy are uncomputable.

Theorem 2.3. a) dimg : Gr(RY) — {0,1,...,d} is (Y4, p-)—computable
b) and(y?,p-)—computable; that is(9, p)—computable!

Lemma 2.4. a) The generalized determinant(is®*¥, p)—-computable, namely the mapping
Detyk : Rk 5 (ay,...,a) — max{|detaj,,...,aj,)| : 1< j1 < -+ < jg <k}

b) RI*K 5 A — rangdA) € AW is (p9K, yd)—computable.

c) Rk 5 A kern(A) € AWM is (p@<k yk)—computable.

d) R¥”*Knrank 1k 5 A rangdA) € A is (pdK yd)—computable.

e) Orthogonal complement, i.e. the mapp®gRY) 5 L — L+ € Gr(RY), is
both (42, yd)—computable andy?, yd)—computable.

f) The multivalued mappinBasisix : Gr(RY) > L = {B € R%K: rangéB) = L}
is (Y9, p9*K)—computable.

Theorem 2.5. For fixed integer® < k < d, the following representations
of Gr(RY) are uniformly equivalent: A name ofdGrg(RY) is

a) ap®*k-name for some basigx..,x € RY for L;

b) same for an orthonormal basis;

c) ap?*™-name (me N arbitrary) for some real d< m-matrix B with L= rangéB);
d) ayd—name of d, i.e., approximations to,dfrom above

e) ayd—name of g, i.e., approximations to,dfrom below

f) ap™d-name (me N arbitrary) for some real mx d-matrix A with L= kern(A);
a’)—f") similarly, but for L’ := L+ and K := d — k instead of L and k.

Fact 2.6 (E. Specker 1967) et C4[Z] denote the vector space of monic polynomials of degree
d. The mappin@?> (z,...,z4) — |‘|‘J?':1(Z —zj) € Cy[Z] has a computable multivalued inverse.

Lemma 2.7. a) Ford e N, given xy1,...,yg € Randv:=Card{1<i <d:x=YVi},
one can computéiy,...,iy) with1 <i; <--- <iy <d and x=Vyj, = --- =Vi,.

b) Given x,...,xq € R and k:= Card{xy,...,Xq},
one can computey,...,vq € Nwithv; = Card{i : 1 <i <d,x = X }.



Theorem 2.8. a) Given ap%(9-1/2_name of a symmetric realxdd—matrix A,
a d—tuple(A1,...,\q) of its eigenvalues with multiplicities is multivalupti-computable.

b) Given ap®(d-1/2_name of a symmetric realxdd—matrix A and given its numb@ardo(A)
of distinct eigenvalues, one can diagonalize A in the sehp&@—computing an orthonor-
mal basis of eigenvectors.

c) Given ap®(9-1)/2_name of a symmetric realxid—matrix A and given the integer
llogom|, where nfA) := min{dimkernA—A-id):Aco(A)} € {1,....d}

denotes the multiplicity of some least-degenerate eideayane canpi—compute some
eigenvector of A.

Definition 2.9. For 1 < k < d integers leClassq (X1, ..,Xq) = {j: 1< j <d,Xj =X}
and consider the multivalued mapping

SomeClassq : RY > (X1,...,Xd) B {Classd7k(xl,...,xd) 1<k< d}
yielding, forsomek, the set of all indices i with; x= .

Lemma 2.10. Let x, ..., Xg € R and m:= minj<k<q CardClassq k(X) as above.

a) Foreachl <k, ¢ <d it either holdsClassq ¢(X) = Classqg k(X) or Classq ¢(X) N Classq k(X) = 0.
Also, Uk Classq k(x) = [d].

b) Consider IC [d] such that

xi#x; forall iel andall jeld]\I . (6)
Then IN Classq k(X) # 0 impliesClassg k(X) C I.

Moreoverl < Cardl) < 2m implies |= Classq k(x) for some k.

c) Suppose k N is such that k& m < 2k.
Then there existésuch that I:= Classq ¢(X) satisfies (6) and hask Cardl) < 2k.

Conversely every € [d] with k< Cardl) < 2k satisfying (6) has = Classq ¢(x) for somef.

d) Given api—name ofxy,...,xq) and given ke N with k< m < 2k,
one can computably find sorfitassq /(X).

3 Continuity for Multivalued Functions

Definition 3.1. Let (X,d) and (Y, e) denote metric spaces and abbreviatexB) := {xX € X :
d(x,X) <r} CX andB(x,r):={X € X:d(x,X) <r}; similarly for Y. Now fix some fC X =Y
and call(x,y) € f apoint of continuity of f if the following formula holds:

Ve >0 36> 0 vX € B(x,8) ndom(f) 3y € B(y,e) N f(X) .

a) Call f strongly continuous if every(x,y) € f is a point of continuity of f:
vx e dom(f) Vye f(x) Ve >0 30> 0 VX € B(x,d) ndom(f) 3y € B(y,e) N f(X).
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Fig. 1.a) For a relatiory (dark gray) to tighterf (light gray) means no more freedom (yet the possibility)toase somg € g(x)
than to choose somee f(x) (whenever possible).  b) lllustratirigd—continuity in(x,y) for a relation (black)

b) Call f weakly continuous if the following holds:

vxedom(f) Jye f(x) Ve >0 35> 0 ¥X € B(x,d) ndom(f) 3y € B(y,e) N f(X).
c) Call f uniformly weakly continuous if the following holds:

Ve >0 36> 0 vxedom(f) Jye f(x) VX € B(x,d) ndom(f) 3y € B(y,e) N f(X).
d) Call f nonuniformly weakly continuous if the following holds:

Ve >0 Vxedom(f) 36> 0 Jye f(x) VX € B(x,8) ndom(f) 3y € B(y,e) N f(X).
e) Call f Henkin-continuous if the following holds:

(VX ZZ;:“) Eljii‘(?()) vX € B(x,d)ndom(f) 3y e B(y,e)nf(X) . (7)

f) Some gC X =Y tightens f (and floosens g)
if bothdom(f) C dom(g) andvx € dom(f) : g(x) C f(x) hold.

A A A

0 > 0 T 0 >

Fig. 2. a) Example of a uniformly weakly continuous but not weaklytiouous relation. b) A semi-uniformly strongly continu-

ous relation which is not uniformly strongly continuous Acfompact, weakly and uniformly weakly continuous relatwimch
is not computable relative to any oracle.



Lemma 3.2. a) Let f be uniformly weakly continuous and suppose that bistwise compact
in the sense that(k) CY is compact for every X. Then f is weakly continuous.

b) Let f be nonuniformly weakly continuous atmm( f) compact.
Then f is uniformly weakly continuous.

c) If f is Henkin-continuous and tightens g, then also g is kiemontinuous.

d) If f and g:CY = Z are Henkin-continuous, thensois §:C X = Z.

e) A function F.C {0,1}* — {0,1}%is an(a, B)-realizer of f
iff F tightensB~tofoa iff BoFoa~!tightens f.

f) If rangé f) C dom(g) holds and if both f and g map compact sets to compact sets,
then so does gf.

Proposition 3.3. a) The inversqagl :[0,1] = {0, 1} of the binary representation restricted to
[0,1] is not weakly continuous.
b) Every xc R has a signed digit expansion

x = Yo ya2"  ane{0,1,1} (8)

with no consecutive digit palftl nor11 nor11 nor11.
c) Forke N, each|x| < 2 -2~X admits such an expansion with & 0 for all n <k.
And, Conversely,at Zn ki1 @2 " with (an,an, 1) € {10,10,01, 01 ,00} for every n
requires|x| < Z-27K.
d) Letx=3,__nan2 " be a signed digit expansion and=KN
such that(an ans1) € {10,10,01,01,00} for each n> k.
Then every’xe [x—27%/3, x+2 I‘/3] admits a signed digit expansion
X =S n _nbn2-" with a, = b,Vn < k.
d) Letz:={0,1,1,. }.
The inversepgd1 : R = X% of the signed digit representation is Henkin-continuous.

Theorem 3.4. Let KC R be compact and fK = R computable relative to some oracle.
Then f is Henkin-continuous.

Example 3.5 A compact total Henkin—continuous but not relatively cotaple relation.
(Dashed lines indicate alignment and are not part of the tpap




4 Computational Complexity

Definition 4.1. Call f : [0,1] — R computable in time(h) and space @) if some Turing ma-
chine can, upon input of evepgs—name of every € dom( f) and of n in unary, produce within
these ressource bounds some £ such that f (x) —c/2"1| < 27",

Lemma 4.2. If f is (even oracle-)pp, pp)—computable in timeh), then t N> n—t(n+2) €
N constitutes a modulus of uniform continuity to f, ije= x| <27 M = |f(x)— f(X)] <2

Example 4.3 The following function is computable in exponential timat, ot in polynomial
time — and oracles do not help: :10,1] > x — 1/In(e/x) € (0,1], f(0) =0.
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f(x)=y[H f(x) = X
COMPUTABLE () =y[H] (%) = sgnx)
o1 EXPONENTIAL

compLexiTy | T =VYE] T(X)=1/In(e/x)
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Fig. 3.a) (Part of) the graph of (x) = 1/In(e/x) from Example 4.3 demonstrating its exponential rise from 0.
b) Lower bound techniques in real function computatidnt N is the Halting problem antf D E € EXP \ P.

In particular functional evaluatioff,x) — f(X) is not computable within time bounded only
in n, the output precision, even when restricting to smoothtions f : [0,1] — [0, 1].



5 Recap on Blum-Shub-Smale (BSS) Machines

A BSS machinéV (overR) can in each step add, subtract, multiply, divide, and branrcthe
result of comparing two reals. Its memory consists of an it&#isequence of cells, each capable
of holding a real number and accessed via two special indgistezs (similar to a two-head
Turing machine). A program foMl may store a finite number of real constants. The notions
of decidabilityand semi-decidabilitytranslate straightforwardly from discreteC {0,1}* and

L C N* to real languagek C R*. Computing a functiorf :C R* — R* means that the machine,
givenx € dom(f), outputsf(x) within finitely many steps and terminates while diverging on
inputsx ¢ dom( f).

Example 5.1 a) rank :R™™ — N is uniformly BSS—computable (in tirdén3 4 m?3))

b) The multivalued mappin&™™ > A= {(by,...) basis ofkern(A)} € R™* is uniformly
BSS—computable (in tint@(n® 4+ m?)).

c) The multivalued mappin®™™ > A= {(cy,...) basis ofrangdA)} € R™* is uniformly
BSS—computable (in tint&(n® + m?)).

d) The graph of the square root function is BSS—decidable.

e) Q is BSS semi-decidable; and so is the&setf algebraic reals.

f) The algebraic degree functiateg :A — N is BSS—computable.

g) A languagell C R* is BSS semi-decidable ifi. = rangé f) for some total computable
f:R* — R

h) The real Halting probleni is not BSS—decidable, where

H := {(M,x) : BSS machin®l terminates on input x

Definition 5.2. Fix a field FC R and de N. A set
B = {xeRY:p(x)=...=p(X) =0 A qu(x) >O0A...Aq(X) >0} (9)

of solutions to a finite system of polynomial (in)equalitiét py, ..., Pk, d1,---,q € F[Xq, ..., Xd]

is calledbasic semi-algebraic oveér.

A subset oRY semi-algebraic oveF is a finite union of ones that are basic semi-algebraic over
F. Itis countably semi-algebraic ovErif the union involves countably many members, all being
basic semi-algebraic over F.

If is known that every basic semi-algebraic set has at magtlifjrmany connected components.

Lemma5.3. For f :CR* — R*, and q,...,cj € R, consider the following claims:

a) fis computable by a BSS Machine with constants.c,cj € R.

b) There is an integer sequen(d,),, such thadom(f) = l4),,By, is the countable disjoint union
of setsB,, C R% semi-algebraic over field extension:& Q(cy,...,Cj), and each restriction
f\Bn, n e N, a quolynomial with coefficients from F.

c) There existsjg1 € R suchthat f is computable by a BSS Machine with constants.¢cj, Cj1.



Then a) implies b) implies c).

Corollary 5.4. a) The square root functiof®, ©) > x+— /X > 0 is not BSS—computable.
b) The sequenc > n— eV" is not BSS—computable.

c) Q andA are not BSS—decidable

d) noris real integer linear programming(A,b) | Ac R™™M be Z™M Ix € Z" : A-x=b}.

Fact 5.5 (Lindemann—Weierstral3) Let &, . .., a, be algebraic yet linearly independent ov@r
Then é1,...,e? are algebraically independent ovér.

6 Post's Problem over the Reals

Proposition 6.1. a) Letxe R, € >0, N € N. There exists & A ofdega) = N with |[x—a| < €.

b) Let f:dom(f) C R — R be analytic and non-constant,& dom(f) uncountable.
Then, f maps some«T to a transcendental value, that is(xj ¢ A.

¢) Fix non-constant = p/q < R(X) with polynomials pg ofded p) < n,dedq p) < m.
Let &,...,anrm € dom(f) be distinct real algebraic numbers with{d;), ..., f(an+m) € Q.
There are co-prime polynomiafs § ofdeg p) < n, dedq §) < m with coefficients in the alge-
braic field extensio@(ay, . ..,an+m) such that, for all xc dom(f) = {x: q(x) # 0} C R, it
holds f(x) = f(x) := B(x)/6(x).

d) Continuing c), let &> maxdedga). Then f(x) ¢ Q for all transcendental x dom( f)
as well as for all xc A ofdegx) > D :=d™™-max{n—1,m—1}.

Theorem 6.2. The set() of rationals is semi-decidable and undecidable yet sirigthsier
thanH: A remains undecidable to a machine with oracle acce%3.to

7 Computable Analysis vs. Algebraic Computability

Theorem 7.1. a) Let f:C RK — R be continuous and computable by a BSS machineithout
real constants. Then f i — p)—computable with oracle access to the Halting problem.

b) To every there exists a Ctotal function f: [0,1] — R computable by a constant-free BSS
machine which is natp — p)—computable.
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Fig. 4. A piecewise linear and @ unit pulse, and a non-overlapping superposition by scditss
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