1 Recap on Recursive Analysis

1.1 Notions of computability for real numbers

Definition 1.1. a) Call $x \in \mathbb{R}$ binarily computable iff there exists a computable sequence $b_{n} \in$ $\{0,1\}, n \geq-N$, (i.e. a function $b:\{-N,-N+1, \ldots, 0,1,2, \ldots\} \rightarrow\{0,1\}$) such that $\sum_{n=-N}^{\infty} b_{n} 2^{-n}$.
b) Call $x \in \mathbb{R}$ computable iff there exists a computable integer sequence $\left(c_{n}\right)_{n}$ such that $\left|x-c_{n} / 2^{n+1}\right| \leq 2^{-n}$.
c) Let $\mathbb{D}_{n}:=\left\{c / 2^{n} \mid c \in \mathbb{Z}\right\}$ and $\mathbb{D}:=\bigcup_{n} \mathbb{D}_{n}$ denote the set of dyadic rationals.
d) Call $x \in \mathbb{R}$ Cauchy-computable iff there exist computable sequences $q_{n}, \varepsilon_{n} \in \mathbb{Q}$ such that $\left|x-q_{n}\right| \leq \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
e) Call $x \in \mathbb{R}$ naively computable iff there exists a computable sequence $q_{n} \in \mathbb{Q}$ such that $q_{n} \rightarrow x$ as $n \rightarrow \infty$.
f) A sequence $s_{n} \in\{1,0, \overline{1}\}, n \geq-N$, is called a signed digit expansion of $\sum_{n=-N}^{\infty} s_{n} 2^{-n}$. Encoded over $\{0,1\}^{\omega},\left(\operatorname{bin}(N),\left(s_{n}\right)_{n}\right)$ is a $\rho_{s d}$-name of x. Call a sequence $\left(b_{n}\right)_{n}$ as in a) (encoded over $\left.\{0,1\}^{\omega}\right)$ a ρ_{b}-name of x; and $\left(c_{n}\right)_{n}$ as in b) a ρ-name of x.
A pair $\left(q_{n}\right)_{n}$ and $\left(\varepsilon_{n}\right)_{n}$ of sequences as ind $)$ is a ρ_{C}-name of x.
A sequence $\left(q_{n}\right)_{n}$ as in e) is a ρ_{n}-name of x.
Lemma 1.2. a) Every binarily computable real has a computable signed digit expansion.
b) Every real with a computable signed digit expansion is computable.
c) Every computable real is Cauchy-computable d) and vice versa.
e) (Cauchy-)computability implies naive computability,

Example 1.3 a) Every rational number $x \in \mathbb{Q}$ is binarily computable.
b) $\sqrt{2}$ and π are (Cauchy-)computable real numbers.
c) For $H \subseteq \mathbb{N}$ the Halting problem, $\sum_{n \in H} 2^{-n}$ is not binarily computable
d) but naively computable.

1.2 Computing functions and relations on a continuous universe

Definition 1.4. a) A multivalued (possibly partial) function $f: \subseteq X \rightrightarrows Y$ (aka relation or multifunction) is a subset of $X \times Y$.
We write $\operatorname{dom}(f):=\{x \in X \mid \exists y \in Y:(x, y) \in f\}$ and $f(x)=\{y \in Y \mid(x, y) \in f\}$.
b) A Type-2 Machine has an infinite read-only input tape, an infinite one-way output tape, and an unbounded work tape.
It computes a (possibly partial) function $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$.
c) A representation of a set X is a partial surjective mapping $\alpha: \subseteq\{0,1\}^{\omega} \rightarrow X$.
d) Fix representations α of X and β of Y and a (possibly partial and multivalued) function $f: \subseteq X \rightrightarrows Y$.
A $(\alpha \rightarrow \beta)$-realizer of f is a (partial but single-valued) function $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$ with $f(\alpha(\overline{\boldsymbol{\sigma}})) \ni \beta(F(\overline{\boldsymbol{\sigma}}))$ for every $\overline{\boldsymbol{\sigma}} \in \operatorname{dom}(F):=\{\overline{\boldsymbol{\sigma}} \mid \alpha(\overline{\boldsymbol{\sigma}}) \in \operatorname{dom}(f)\}$.
e) A function as in d) is $(\alpha \rightarrow \beta)$-computable if it has a computable realizer in the sense of b). (We simply say computable if α, β are clear from context.) It is $(\alpha \rightarrow \beta)$-continuous if it has a continuous realizer.
f) Let α_{i} be representations for $X_{i}, i \in I \subseteq \mathbb{N}$, and $\langle\cdot \mid \cdot\rangle: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ a computable surjective pairing function. Then $\left(\sigma_{m}\right)_{m}$ is a $\left(\prod_{i \in I} \alpha_{i}\right)$-name of $\left(x_{i}\right)_{i} \in \prod_{i} X_{i}$ iff $\left(\sigma_{\langle i, n\rangle}\right)_{n}$ is an α_{i}-name of $x_{i} \in X_{i}$ for every $i \in I$.

Example 1.5 a) Let α, β, γ denote representations of X, Y, Z, respectively. If $f: \subseteq X \rightrightarrows Y$ is $(\alpha \rightarrow$ β-computable and $g: \subseteq Y \rightrightarrows Z$ is $(\beta \rightarrow \gamma)$-computable, then so is their composition

$$
\begin{equation*}
g \circ f:=\{(x, z) \mid x \in X, z \in Z, f(x) \subseteq \operatorname{dom}(g), \exists y \in Y:(x, y) \in f \wedge(y, z) \in g\} \tag{1}
\end{equation*}
$$

b) A single-valued total real function $f:[0,1] \rightarrow \mathbb{R}$ is $(\rho \rightarrow \rho)$-computable if some Type- 2 machine can map every ρ-name $\left(c_{n}\right)_{n}$ of some $x \in[0,1]$ to a ρ-name $\left(c_{m}^{\prime}\right)_{m}$ of $f(y)$.
c) Addition and multiplication are $(\rho \times \rho \rightarrow \rho)$-computable; inversion $\mathbb{R} \backslash\{0\} \ni x \mapsto 1 / x$ is $(\rho \rightarrow \rho)$-computable.
d) Every polynomial with computable coefficients is computable; and vice versa.
e) Let $\left(a_{n}\right)_{n}$ denote a computable sequence, $R:=1 / \lim \sup _{n} \sqrt[n]{\left|a_{n}\right|}$ and $0<r<R$. Then $[-r, r] \ni$ $x \mapsto \sum_{n} a_{n} x^{n}$ is computable. In particular $\exp , \sin , \cos , \ln (1+x)$ are computable.
f) Fix $\varepsilon>0$. The multifunction $\widetilde{\operatorname{sgn}}_{\varepsilon}: \mathbb{R} \rightrightarrows\{-1,+1\}$ with $\varepsilon>x \mapsto-1$ and $-\varepsilon<x \mapsto+1$ is computable.
g) Any $x \in \mathbb{R}$ is binarily computable iff it is computable.

Theorem 1.6. a) Every (oracle-)computable $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$ is continuous.
b) To every continuous $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$, there exists an oracle relative to which F becomes computable.
c) Every oracle-computable $f:[0,1] \rightarrow \mathbb{R}$ is continuous!
d) There exists a computable sequence of (degrees and coefficient lists of) univariate dyadic polynomials $P_{n} \in \mathbb{D}[X]$ with $\left\|P_{n}(x)-|x|\right\| \leq 2^{-n}$ on $[-1,+1]$.
e) Fix an oracle \mathcal{O}. Continuous (total) $f:[0,1] \rightarrow \mathbb{R}$ is computable relative to \mathcal{O} iff there exists a sequence $P_{n} \in \mathbb{D}_{n+1}[X]$ computable relative to \mathcal{O} such that $\left\|f-P_{n}\right\|_{\infty} \leq 2^{-n}$.
f) To every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ there is an oracle relative to which f becomes computable.

1.3 Encoding functions and closed subsets

Definition 1.7. a) $A\left[\rho^{d} \rightarrow \mathbf{\rho}\right]$-name of $f \in C\left(\mathbb{R}^{d}\right)$ is a double sequence
$P_{n, m} \in \mathbb{D}\left[X_{1}, \ldots, X_{d}\right]$ with $\left|f(x)-P_{n, m}(x)\right| \leq 2^{-n}$ for all $\|x\| \leq m$.
b) A closed set $A \subseteq \mathbb{R}^{d}$ is computable if the function

$$
\begin{equation*}
\operatorname{dist}_{A}: \mathbb{R}^{d} \ni x \mapsto \min \{\|x-a\|: a \in A\} \in \mathbb{R} \cup\{\infty\}=: \overline{\mathbb{R}} \tag{2}
\end{equation*}
$$

is computable. $A \psi^{d}$-name of $A \in \mathcal{A}^{(d)}$ is a $\left[\rho^{d} \rightarrow \rho\right]$-name of dist $_{A}$, where $\mathcal{A}^{(d)}$ denotes the space of closed subsets of \mathbb{R}^{d}.
c) $A \psi_{<}^{d}$-name of A is a $\left(\prod_{m \in \mathbb{N}} \rho^{d}\right)$-name of some sequence $x_{m} \in A$ dense in A.
d) $A \psi_{>}^{d}$-name of A are two sequences $q_{n} \in \mathbb{Q}^{d}$ and $\varepsilon_{n} \in \mathbb{Q}$ such that

$$
\begin{equation*}
\mathbb{R}^{d} \backslash A=\bigcup_{n} B\left(q_{n}, \varepsilon_{n}\right) \quad \text { where } \quad B(x, r):=\{y:\|x-y\|<r\} \tag{3}
\end{equation*}
$$

e) A $\rho_{<-n a m e ~ o f ~} x \in \mathbb{R}$ is a sequence $\left(q_{n}\right) \subseteq \mathbb{Q}$ with $x=\sup _{n} q_{n}$; a $\rho_{>-n a m e ~ o f ~} x \in \mathbb{R}$ is a sequence $\left(q_{n}\right) \subseteq \mathbb{Q}$ with $x=\inf _{n} q_{n}$.
f) For representations α, β of X let $\alpha \sqcap \beta:=\left.(\alpha \times \beta)\right|^{\Delta_{X}}$, where $\Delta_{X}:=\{(x, x) \mid x \in X\}$.
g) Write $\alpha \preceq \beta$ if id : $X \rightarrow X$ is $(\alpha \rightarrow \beta)$-computable.
h) We say that $U \subseteq X$ is $\alpha-$ r.e. if there exists a Turing machine which terminates precisely on input of all α-names of $x \in U$ and diverges on all $\alpha-$ names of $x \in X \backslash U$.

Theorem 1.8. a) It holds $\rho \preceq \rho_{<} \sqcap \rho_{>} \preceq \rho$.
b) Every $\left(\rho \rightarrow \rho_{<}\right)$-computable $f:[0,1] \rightarrow \mathbb{R}$ is lower semi-continuous.
c) $A \operatorname{set} A \in \mathcal{A}^{(d)}$ is $\psi_{>}^{d}$-computable iff $\mathbb{R}^{d} \backslash A$ is ρ^{d}-r.e.
d) Let $\|\cdot\|$ in Equation 3 denote any fixed computable norm. Let $\|\cdot\|^{\prime}$ denote some other norm and $\psi_{>}^{\prime d}$ the induced representation. Then $\psi_{>}^{d} \preceq \psi_{>}^{\prime d}$.
e) It holds $\psi^{d} \preceq \psi_{<}^{d} \sqcap \psi_{>}^{d} \preceq \psi^{d}$.

Moreover A is $\psi_{<}^{d}$-computable iff dist_{A} is $\left(\rho^{d} \rightarrow \rho_{>}\right)$-computable;
and A is $\psi_{>}^{d}$-computable iff dist_{A} is $\left(\rho^{d} \rightarrow \rho_{<}\right)$-computable.
In particular ψ^{d}-computability is invariant under a change of computable norms.
f) Union $\mathcal{A}^{(d)} \times \mathcal{A}^{(d)} \ni(A, B) \mapsto A \cup B \in \mathcal{A}^{(d)}$ is $\left(\psi^{d} \times \psi^{d} \rightarrow \psi^{d}\right)$-computable; but intersection is not.
g) Closed image $C\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{k}\right) \times \mathcal{A}^{(d)} \ni(f, A) \mapsto \overline{f[A]} \in \mathcal{A}^{(k)}$ is $\left(\left[\rho^{d} \rightarrow \rho^{k}\right] \times \psi_{<}^{d}, \psi_{<}^{k}\right)$-computable.
h) Preimage $C\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{k}\right) \times \mathcal{A}^{(k)} \ni(f, B) \mapsto f^{-1}[B] \in \mathcal{A}^{(d)}$ is $\left(\left[\rho^{d} \rightarrow \rho^{k}\right] \times \psi_{>}^{k}, \psi_{>}^{d}\right)$-computable.
j) $\{\emptyset\}$ is $\left.\psi_{>}^{d}\right|^{[0,1]^{d}}-$ r.e.

2 (In-)Computability in Linear Algebra and Geometry

Common algorithms (e.g. Gaussian Elimination) generally pertain to the Blum-Shub-Smale model (equivalently: real-RAM) of real computation - and lead to difficulties when implemented.

Definition 2.1. a) For a set $S \subseteq \mathbb{R}^{d}$, its convex hull is the least convex set containing S :

$$
\operatorname{chull}(S):=\bigcap\left\{C: S \subseteq C \subseteq \mathbb{R}^{d}, C \text { convex }\right\}
$$

A polytope is the convex hull of finitely many points, chull $\left(\left\{p_{1}, \ldots, p_{N}\right\}\right)$. For a convex set C, point $p \in C$ is called extreme (written " $p \in \operatorname{ext}(C)$ ") if it does not lie on the interior of any line segment contained in C :

$$
p=\lambda \cdot x+(1-\lambda) \cdot y \wedge x, y \in C \wedge 0<\lambda<1 \quad \Rightarrow \quad x=y
$$

b) For a set X, let $\binom{X}{k}:=\left\{\left\{x_{1}, \ldots, x_{k}\right\}: x_{i} \in X\right.$ pairwise distinct $\}$. Convex Hull, as understood in computational geometry, is the problem

$$
\begin{equation*}
\operatorname{extchull}_{N}:\binom{\mathbb{R}^{d}}{N} \ni\left\{x_{1}, \ldots, x_{N}\right\} \mapsto\left\{y \text { extreme point of } \operatorname{chull}\left(x_{1}, \ldots, x_{N}\right)\right\} \tag{4}
\end{equation*}
$$

of identifying the extreme points of the polytope C spanned by given pairwise distinct x_{1}, \ldots, x_{N}.
c) For $1 \leq j \leq n$ let $g_{j}: \mathbb{R}^{d} \ni x \mapsto a_{j 0}+\sum_{i} x_{i} \cdot a_{j i} \in \mathbb{R}\left(\left(a_{j 1}, \ldots, a_{j d}\right) \neq 0\right)$ denote an affine linear function and $H_{j}=g_{j}^{-1}(0)$ its induced oriented hyperplane, $H_{j}^{+}=g_{j}^{-1}(0, \infty)$ the positive halfspace and $H_{j}^{-}=g_{j}^{-1}(-\infty, 0)$ the negative one. For $x \in \mathbb{R}^{d}$,

$$
\pi(x)=\left(\operatorname{sgn} g_{j}(x)\right)_{j=1, \ldots, n} \in\{-1,0,+1\}^{n}
$$

is called its position vector. A cell of $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ is a subset $\pi^{-1}(\sigma)$ of \mathbb{R}^{d} for some $\sigma \in\{-1,+1\}^{n}$. Point Location is the problem of identifying, to fixed \mathcal{H} and upon input of some point x, the cell that x lies in, i.e., of computing the function

$$
\begin{equation*}
\text { Pointloc }_{\mathcal{H}}: \mathbb{R}^{d} \backslash \bigcup \mathcal{H} \rightarrow\{-1,+1\}^{n}, \quad x \mapsto \pi(x) \tag{5}
\end{equation*}
$$

d) Let $\operatorname{det}_{d}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}$ denote the determinant mapping and $\operatorname{rank}_{d, k}: \mathbb{R}^{d \times k} \rightarrow \mathbb{N}$ the rank. Moreover abbreviate $\operatorname{Gr}_{k}(V):=\{U \subseteq V$ lin.subspace, $\operatorname{dim}(U)=k\}$ and $\operatorname{Gr}(V)=\bigcup_{k} \operatorname{Gr}_{k}(V)$. Finally, GramSchmidt ${ }_{d, k}: \operatorname{rank}_{d, k}^{-1}[k] \rightarrow \mathbb{R}^{d \times k}$ is the mapping induced by the Gram-Schmidt orthonormalization process.
e) Consider the multifunctions

$$
\text { LSolve }_{d, k}: \operatorname{rank}_{d, k}^{-1}[\{0,1, \ldots, k-1\}] \ni A \mapsto \operatorname{ker}(A) \backslash\{0\}
$$

and $\mathrm{LSolve}_{d, k}^{\prime}: \subseteq \mathbb{R}^{d \times(k+1)} \ni(A, b) \mapsto\{x \mid A \cdot x=b\}$.
f) Consider the multifunctions SomeEVec ${ }_{d}: \mathbb{R}^{d \times(d+1) / 2} \ni A \Leftrightarrow\{x \neq 0 \mid \exists \lambda: A \cdot x=\lambda x\}$ and EVecBase $_{d}: \mathbb{R}^{d \times(d+1) / 2} \ni A \mapsto\left\{O \in \mathcal{O}\left(\mathbb{R}^{d}\right) \mid O^{\dagger} \cdot A \cdot O=\operatorname{diag}(\cdots)\right\}$.

Proposition 2.2. a) extchull ${ }_{N}$ is discontinuous, hence incomputable;
b) For any $\mathcal{H} \neq \emptyset$, Pointloc $_{\mathcal{H}}$ is discontinuous, hence incomputable;
c) det_{d} and $\mathrm{GramSchmidt}_{d, k}$ are computable;
d) $\operatorname{rank}_{d, k}$ is discontinuous (hence incomputable) but ($\rho^{d \times k}, \rho_{<}$)-computable.
e) Linear independence $\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{d \times k}\right.$ linearly independent $\}$ is $\rho^{d \times k}$-r.e.
f) $\mathrm{LSolve}_{d, k}$ and $\mathrm{SomeEVec}_{d}$ are uncomputable.

Theorem 2.3. a) $\operatorname{dim}_{d}: \operatorname{Gr}\left(\mathbb{R}^{d}\right) \rightarrow\{0,1, \ldots, d\}$ is $\left(\psi_{<}^{d}, \rho_{<}\right)$-computable
b) and $\left(\psi_{>}^{d}, \rho_{>}\right)$-computable; that is, $\left(\psi^{d}, \rho\right)$-computable!

Lemma 2.4. a) The generalized determinant is ($\left.\rho^{d \times k}, \rho\right)$-computable, namely the mapping $\operatorname{Det}_{d \times k}: \mathbb{R}^{d \times k} \ni\left(a_{1}, \ldots, a_{k}\right) \mapsto \max \left\{\left|\operatorname{det}\left(a_{j_{1}}, \ldots, a_{j_{d}}\right)\right|: 1 \leq j_{1} \leq \cdots \leq j_{d} \leq k\right\}$.
b) $\mathbb{R}^{d \times k} \ni A \mapsto \operatorname{range}(A) \in \mathcal{A}^{(d)}$ is $\left(\rho^{d \times k}, \psi_{<}^{d}\right)$-computable.
c) $\mathbb{R}^{d \times k} \ni A \mapsto \operatorname{kern}(A) \in \mathcal{A}^{(k)}$ is $\left(\rho^{d \times k}, \psi_{>}^{k}\right)$-computable.
d) $\mathbb{R}^{d \times k} \cap \operatorname{rank}^{-1}[k] \ni A \mapsto \operatorname{range}(A) \in \mathcal{A}^{(d)}$ is $\left(\rho^{d \times k}, \psi_{>}^{d}\right)$-computable.
e) Orthogonal complement, i.e. the mapping $\operatorname{Gr}\left(\mathbb{R}^{d}\right) \ni L \mapsto L^{\perp} \in \operatorname{Gr}\left(\mathbb{R}^{d}\right)$, is both $\left(\psi_{<}^{d}, \psi_{>}^{d}\right)$-computable and $\left(\psi_{>}^{d}, \psi_{<}^{d}\right)$-computable.
f) The multivalued mapping $\operatorname{Basis}_{d, k}: \operatorname{Gr}_{k}\left(\mathbb{R}^{d}\right) \ni L \Leftrightarrow\left\{B \in \mathbb{R}^{d \times k}: \operatorname{range}(B)=L\right\}$ is $\left(\psi_{<}^{d}, \rho^{d \times k}\right)$-computable.

Theorem 2.5. For fixed integers $0 \leq k \leq d$, the following representations of $\mathrm{Gr}_{k}\left(\mathbb{R}^{d}\right)$ are uniformly equivalent: A name of $L \in \mathrm{Gr}_{k}\left(\mathbb{R}^{d}\right)$ is
a) a $\rho^{d \times k}$-name for some basis $x_{1}, \ldots, x_{k} \in \mathbb{R}^{d}$ for L;
b) same for an orthonormal basis;
c) a $\rho^{d \times m}$-name ($m \in \mathbb{N}$ arbitrary) for some real $d \times m$-matrix B with $L=\operatorname{range}(B)$;
d) a $\psi_{<}^{d}$-name of d_{L}, i.e., approximations to d_{L} from above
e) a $\psi_{>}^{d}$-name of d_{L}, i.e., approximations to d_{L} from below
f) a $\rho^{m \times d}$ _name ($m \in \mathbb{N}$ arbitrary) for some real $m \times d$-matrix A with $L=\operatorname{kern}(A)$;
$\left.a^{\prime}\right)-f^{\prime}$) similarly, but for $L^{\prime}:=L^{\perp}$ and $k^{\prime}:=d-k$ instead of L and k.
Fact 2.6(E. Specker 1967) Let $\mathbb{C}_{d}[Z]$ denote the vector space of monic polynomials of degree d. The mapping $\mathbb{C}^{d} \ni\left(z_{1}, \ldots, z_{d}\right) \mapsto \prod_{j=1}^{d}\left(Z-z_{j}\right) \in \mathbb{C}_{d}[Z]$ has a computable multivalued inverse.

Lemma 2.7. a) For $d \in \mathbb{N}$, given $x, y_{1}, \ldots, y_{d} \in \mathbb{R}$ and $v:=\operatorname{Card}\left\{1 \leq i \leq d: x=y_{i}\right\}$, one can compute $\left(i_{1}, \ldots, i_{v}\right)$ with $1 \leq i_{1}<\cdots<i_{v} \leq d$ and $x=y_{i_{1}}=\cdots=y_{i_{v}}$.
b) Given $x_{1}, \ldots, x_{d} \in \mathbb{R}$ and $k:=\operatorname{Card}\left\{x_{1}, \ldots, x_{d}\right\}$, one can compute $\mathrm{v}_{1}, \ldots, v_{d} \in \mathbb{N}$ with $\mathrm{v}_{j}=\operatorname{Card}\left\{i: 1 \leq i \leq d, x_{i}=x_{j}\right\}$.

Theorem 2.8. a) Given a $\rho^{d \cdot(d-1) / 2}$-name of a symmetric real $d \times d$-matrix A,
a d-tuple $\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ of its eigenvalues with multiplicities is multivalued ρ^{d}-computable.
b) Given a $\rho^{d \cdot(d-1) / 2}$-name of a symmetric real $d \times d$-matrix A and given its number $\operatorname{Card} \sigma(A)$ of distinct eigenvalues, one can diagonalize A in the sense of $\rho^{d \times d}$-computing an orthonormal basis of eigenvectors.
c) Given a $\rho^{d \cdot(d-1) / 2}$-name of a symmetric real $d \times d$-matrix A and given the integer

$$
\left\lfloor\log _{2} m\right\rfloor \text {, where } m(A):=\min \{\operatorname{dim} \operatorname{kern}(A-\lambda \cdot \mathrm{id}): \lambda \in \sigma(A)\} \quad \in \quad\{1, \ldots, d\}
$$

denotes the multiplicity of some least-degenerate eigenvalue, one can ρ^{d}-compute some eigenvector of A.

Definition 2.9. For $1 \leq k \leq d$ integers let $\operatorname{Class}_{d, k}\left(x_{1}, \ldots, x_{d}\right):=\left\{j: 1 \leq j \leq d, x_{j}=x_{k}\right\}$ and consider the multivalued mapping

$$
\text { SomeClass }_{d}: \mathbb{R}^{d} \ni\left(x_{1}, \ldots, x_{d}\right) \mapsto\left\{\operatorname{Class}_{d, k}\left(x_{1}, \ldots, x_{d}\right): 1 \leq k \leq d\right\}
$$

yielding, for some k, the set of all indices i with $x_{i}=x_{k}$.
Lemma 2.10. Let $x_{1}, \ldots, x_{d} \in \mathbb{R}$ and $m:=\min _{1 \leq k \leq d} \operatorname{Card} \operatorname{Class}_{d, k}(x)$ as above.
a) For each $1 \leq k, \ell \leq d$ it either holds $\operatorname{Class}_{d, \ell}(x)=\operatorname{Class}_{d, k}(x)$ or $\operatorname{Class}_{d, \ell}(x) \cap \operatorname{Class}_{d, k}(x)=\emptyset$. Also, \bigcup_{k} Class $_{d, k}(x)=[d]$.
b) Consider $I \subseteq[d]$ such that

$$
\begin{equation*}
x_{i} \neq x_{j} \quad \text { for all } \quad i \in I \quad \text { and all } \quad j \in[d] \backslash I . \tag{6}
\end{equation*}
$$

Then $I \cap$ Class $_{d, k}(x) \neq \emptyset$ implies Class $_{d, k}(x) \subseteq I$.
Moreover $1 \leq \operatorname{Card}(I)<2 m$ implies $I=\operatorname{Class}_{d, k}(x)$ for some k.
c) Suppose $k \in \mathbb{N}$ is such that $k \leq m<2 k$.

Then there exists ℓ such that $I:=\operatorname{Class}_{d, \ell}(x)$ satisfies (6) and has $k \leq \operatorname{Card}(I)<2 k$.
Conversely every $I \subseteq[d]$ with $k \leq \operatorname{Card}(I)<2 k$ satisfying (6) has $I=\operatorname{Class}_{d, \ell}(x)$ for some ℓ.
d) Given a ρ^{d}-name of $\left(x_{1}, \ldots, x_{d}\right)$ and given $k \in \mathbb{N}$ with $k \leq m<2 k$, one can computably find some $\mathrm{Class}_{d, \ell}(x)$.

3 Continuity for Multivalued Functions

Definition 3.1. Let (X, d) and (Y, e) denote metric spaces and abbreviate $B(x, r):=\left\{x^{\prime} \in X\right.$: $\left.d\left(x, x^{\prime}\right)<r\right\} \subseteq X$ and $\bar{B}(x, r):=\left\{x^{\prime} \in X: d\left(x, x^{\prime}\right) \leq r\right\}$; similarly for Y. Now fix some $f: \subseteq X \rightrightarrows Y$ and call $(x, y) \in f$ a point of continuity of f if the following formula holds:

$$
\forall \varepsilon>0 \quad \exists \delta>0 \forall x^{\prime} \in B(x, \delta) \cap \operatorname{dom}(f) \exists y^{\prime} \in B(y, \varepsilon) \cap f\left(x^{\prime}\right) .
$$

a) Call f strongly continuous if every $(x, y) \in f$ is a point of continuity of f :

$$
\forall x \in \operatorname{dom}(f) \forall y \in f(x) \forall \varepsilon>0 \exists \delta>0 \forall x^{\prime} \in B(x, \delta) \cap \operatorname{dom}(f) \exists y^{\prime} \in B(y, \varepsilon) \cap f\left(x^{\prime}\right)
$$

Fig. 1. a) For a relation g (dark gray) to tighten f (light gray) means no more freedom (yet the possibility) to choose some $y \in g(x)$ than to choose some $y \in f(x)$ (whenever possible). b) Illustrating $\varepsilon-\delta$-continuity in (x, y) for a relation (black)
b) Call f weakly continuous if the following holds:

$$
\forall x \in \operatorname{dom}(f) \exists y \in f(x) \forall \varepsilon>0 \exists \delta>0 \forall x^{\prime} \in B(x, \delta) \cap \operatorname{dom}(f) \exists y^{\prime} \in B(y, \varepsilon) \cap f\left(x^{\prime}\right)
$$

c) Call f uniformly weakly continuous if the following holds:

$$
\forall \varepsilon>0 \exists \delta>0 \quad \forall x \in \operatorname{dom}(f) \exists y \in f(x) \forall x^{\prime} \in B(x, \delta) \cap \operatorname{dom}(f) \exists y^{\prime} \in B(y, \varepsilon) \cap f\left(x^{\prime}\right) .
$$

d) Call f nonuniformly weakly continuous if the following holds:

$$
\forall \varepsilon>0 \forall x \in \operatorname{dom}(f) \exists \delta>0 \exists y \in f(x) \forall x^{\prime} \in B(x, \delta) \cap \operatorname{dom}(f) \exists y^{\prime} \in B(y, \varepsilon) \cap f\left(x^{\prime}\right)
$$

e) Call f Henkin-continuous if the following holds:

$$
\left(\begin{array}{cc}
\forall \varepsilon>0 & \exists \delta>0 \tag{7}\\
\forall x \in \operatorname{dom}(f) & \exists y \in f(x)
\end{array}\right) \forall x^{\prime} \in B(x, \delta) \cap \operatorname{dom}(f) \quad \exists y^{\prime} \in B(y, \varepsilon) \cap f\left(x^{\prime}\right) .
$$

f) Some $g: \subseteq X \rightrightarrows Y$ tightens f (and f loosens g) if both $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $\forall x \in \operatorname{dom}(f): g(x) \subseteq f(x)$ hold.

Fig. 2. a) Example of a uniformly weakly continuous but not weakly continuous relation. b) A semi-uniformly strongly continuous relation which is not uniformly strongly continuous. c) A compact, weakly and uniformly weakly continuous relation which is not computable relative to any oracle.

Lemma 3.2. a) Let f be uniformly weakly continuous and suppose that f is pointwise compact in the sense that $f(x) \subseteq Y$ is compact for every $x \in X$. Then f is weakly continuous.
b) Let f be nonuniformly weakly continuous and $\operatorname{dom}(f)$ compact.

Then f is uniformly weakly continuous.
c) If f is Henkin-continuous and tightens g, then also g is Henkin-continuous.
d) If f and $g: \subseteq Y \rightrightarrows Z$ are Henkin-continuous, then so is $g \circ f: \subseteq X \rightrightarrows Z$.
e) A function $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$ is an (α, β)-realizer of f
iff F tightens $\beta^{-1} \circ f \circ \alpha$ iff $\beta \circ F \circ \alpha^{-1}$ tightens f.
f) If range $(f) \subseteq \operatorname{dom}(g)$ holds and if both f and g map compact sets to compact sets, then so does $g \circ f$.
Proposition 3.3. a) The inverse $\rho_{b}^{-1}:[0,1] \rightrightarrows\{0,1\}^{\omega}$ of the binary representation restricted to $[0,1]$ is not weakly continuous.
b) Every $x \in \mathbb{R}$ has a signed digit expansion

$$
\begin{equation*}
x=\sum_{n=-N}^{\infty} a_{n} 2^{-n}, \quad a_{n} \in\{0,1, \overline{1}\} \tag{8}
\end{equation*}
$$

with no consecutive digit pair 11 nor $\overline{1} \overline{1}$ nor $1 \overline{1}$ nor $\overline{1} 1$.
c) For $k \in \mathbb{N}$, each $|x| \leq \frac{2}{3} \cdot 2^{-k}$ admits such an expansion with $a_{n}=0$ for all $n \leq k$.

And, conversely, $x=\sum_{n=k+1}^{\infty} a_{n} 2^{-n}$ with $\left(a_{n}, a_{n+1}\right) \in\{10, \overline{1} 0,01,0 \overline{1}, 00\}$ for every n requires $|x| \leq \frac{2}{3} \cdot 2^{-k}$.
d) Let $x=\sum_{n=-N}^{\infty} a_{n} 2^{-n}$ be a signed digit expansion and $k \in \mathbb{N}$ such that $\left(a_{n}, a_{n+1}\right) \in\{10, \overline{1} 0,01,0 \overline{1}, 00\}$ for each $n>k$. Then every $x^{\prime} \in\left[x-2^{-k} / 3, x+2^{-k} / 3\right]$ admits a signed digit expansion $x^{\prime}=\sum_{n=-N}^{\infty} b_{n} 2^{-n}$ with $a_{n}=b_{n} \forall n \leq k$.
d) Let $\Sigma:=\{0,1, \overline{1},$.$\} .$

The inverse $\rho_{s d}^{-1}: \mathbb{R} \rightrightarrows \Sigma^{\omega}$ of the signed digit representation is Henkin-continuous.
Theorem 3.4. Let $K \subseteq \mathbb{R}$ be compact and $f: K \rightrightarrows \mathbb{R}$ computable relative to some oracle. Then f is Henkin-continuous.

Example 3.5 A compact total Henkin-continuous but not relatively computable relation.
(Dashed lines indicate alignment and are not part of the graph)

4 Computational Complexity

Definition 4.1. Call $f:[0,1] \rightarrow \mathbb{R}$ computable in time $t(n)$ and space $s(n)$ if some Turing machine can, upon input of every $\rho_{s d}$-name of every $x \in \operatorname{dom}(f)$ and of n in unary, produce within these ressource bounds some $c \in \mathbb{Z}$ such that $\left|f(x)-c / 2^{n+1}\right| \leq 2^{-n}$.

Lemma 4.2. If f is (even oracle-) $\left(\rho_{\mathbb{D}}, \boldsymbol{\rho}_{\mathbb{D}}\right)$-computable in time $t(n)$, then $\mu: \mathbb{N} \ni n \mapsto t(n+2) \in$ \mathbb{N} constitutes a modulus of uniform continuity to f, i.e., $\left|x-x^{\prime}\right| \leq 2^{-\mu(n)} \Rightarrow\left|f(x)-f\left(x^{\prime}\right)\right| \leq 2^{-n}$.

Example 4.3 The following function is computable in exponential time, but not in polynomial time - and oracles do not help:

$$
f:(0,1] \ni x \mapsto 1 / \ln (e / x) \in(0,1], \quad f(0)=0
$$

Fig. 3. a) (Part of) the graph of $f(x)=1 / \ln (e / x)$ from Example 4.3 demonstrating its exponential rise from 0 . b) Lower bound techniques in real function computation; $H \subseteq \mathbb{N}$ is the Halting problem and $\mathbb{N} \supseteq E \in E X P \backslash \mathcal{P}$.

In particular functional evaluation $(f, x) \mapsto f(x)$ is not computable within time bounded only in n, the output precision, even when restricting to smooth functions $f:[0,1] \rightarrow[0,1]$.

5 Recap on Blum-Shub-Smale (BSS) Machines

A BSS machine \mathbb{M} (over \mathbb{R}) can in each step add, subtract, multiply, divide, and branch on the result of comparing two reals. Its memory consists of an infinite sequence of cells, each capable of holding a real number and accessed via two special index registers (similar to a two-head Turing machine). A program for \mathbb{M} may store a finite number of real constants. The notions of decidability and semi-decidability translate straightforwardly from discrete $L \subseteq\{0,1\}^{*}$ and $L \subseteq \mathbb{N}^{*}$ to real languages $\mathbb{L} \subseteq \mathbb{R}^{*}$. Computing a function $f: \subseteq \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ means that the machine, given $x \in \operatorname{dom}(f)$, outputs $f(x)$ within finitely many steps and terminates while diverging on inputs $x \notin \operatorname{dom}(f)$.

Example 5.1 a) rank : $\mathbb{R}^{n \times m} \rightarrow \mathbb{N}$ is uniformly BSS-computable (in time $\mathcal{O}\left(n^{3}+m^{3}\right)$)
b) The multivalued mapping $\mathbb{R}^{n \times m} \ni A \mapsto\left\{\left(b_{1}, \ldots\right)\right.$ basis of $\left.\operatorname{kern}(A)\right\} \in \mathbb{R}^{m \times *}$ is uniformly BSS-computable (in time $\mathcal{O}\left(n^{3}+m^{3}\right)$).
c) The multivalued mapping $\mathbb{R}^{n \times m} \ni A \Leftrightarrow\left\{\left(c_{1}, \ldots\right)\right.$ basis of range $\left.(A)\right\} \in \mathbb{R}^{n \times *}$ is uniformly BSS-computable (in time $\mathcal{O}\left(n^{3}+m^{3}\right)$).
d) The graph of the square root function is BSS-decidable.
e) \mathbb{Q} is BSS semi-decidable; and so is the set \mathbb{A} of algebraic reals.
f) The algebraic degree function $\operatorname{deg}: \mathbb{A} \rightarrow \mathbb{N}$ is BSS-computable.
g) A language $\mathbb{L} \subseteq \mathbb{R}^{*}$ is BSS semi-decidable iff $\mathbb{L}=\operatorname{range}(f)$ for some total computable $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$.
h) The real Halting problem \mathbb{H} is not BSS-decidable, where

$$
\mathbb{H}:=\{\langle\mathbb{M}, x\rangle: \text { BSS machine } \mathbb{M} \text { terminates on input } x\}
$$

Definition 5.2. Fix a field $F \subseteq \mathbb{R}$ and $d \in \mathbb{N}$. A set

$$
\begin{equation*}
\mathbb{B}=\left\{x \in \mathbb{R}^{d}: p_{1}(x)=\ldots=p_{k}(x)=0 \wedge q_{1}(x)>0 \wedge \ldots \wedge q_{\ell}(x)>0\right\} \tag{9}
\end{equation*}
$$

of solutions to a finite system of polynomial (in)equalities with $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{\ell} \in F\left[X_{1}, \ldots, X_{d}\right]$ is called basic semi-algebraic over F.
A subset of \mathbb{R}^{d} semi-algebraic over F is a finite union of ones that are basic semi-algebraic over F. It is countably semi-algebraic over F if the union involves countably many members, all being basic semi-algebraic over F.

If is known that every basic semi-algebraic set has at most finitely many connected components.
Lemma 5.3. For $f: \subseteq \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$, and $c_{1}, \ldots, c_{j} \in \mathbb{R}$, consider the following claims:
a) f is computable by a BSS Machine with constants $c_{1}, \ldots, c_{j} \in \mathbb{R}$.
b) There is an integer sequence $\left(d_{n}\right)_{n}$ such that $\operatorname{dom}(f)=\biguplus_{n} \mathbb{B}_{n}$ is the countable disjoint union of sets $\mathbb{B}_{n} \subseteq \mathbb{R}^{d_{n}}$ semi-algebraic over field extension $F:=\mathbb{Q}\left(c_{1}, \ldots, c_{j}\right)$, and each restriction $\left.f\right|_{\mathbb{B}_{n}}, n \in \mathbb{N}$, a quolynomial with coefficients from F.
c) There exists $c_{j+1} \in \mathbb{R}$ such that f is computable by a BSS Machine with constants $c_{1}, \ldots, c_{j}, c_{j+1}$.

Then a) implies b) implies c).
Corollary 5.4. a) The square root function $[0, \infty) \ni x \mapsto \sqrt{x} \geq 0$ is not BSS-computable.
b) The sequence $\mathbb{N} \ni n \mapsto e^{\sqrt{n}}$ is not BSS-computable.
c) \mathbb{Q} and \mathbb{A} are not BSS-decidable
d) nor is real integer linear programming $\left\{\langle A, b\rangle \mid A \in \mathbb{R}^{n \times m}, b \in \mathbb{Z}^{m}, \exists x \in \mathbb{Z}^{n}: A \cdot x=b\right\}$.

Fact 5.5 (Lindemann-Weierstraß) Let a_{1}, \ldots, a_{n} be algebraic yet linearly independent over \mathbb{Q}. Then $e^{a_{1}}, \ldots, e^{a_{n}}$ are algebraically independent over \mathbb{Q}.

6 Post's Problem over the Reals

Proposition 6.1. a) Let $x \in \mathbb{R}, \varepsilon>0, N \in \mathbb{N}$. There exists $a \in \mathbb{A}$ of $\operatorname{deg}(a)=N$ with $|x-a|<\varepsilon$.
b) Let $f: \operatorname{dom}(f) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be analytic and non-constant, $T \subseteq \operatorname{dom}(f)$ uncountable. Then, f maps some $x \in T$ to a transcendental value, that is, $f(x) \notin \mathbb{A}$.
c) Fix non-constant $f=p / q \in \mathbb{R}(X)$ with polynomials p, q of $\operatorname{deg}(p)<n, \operatorname{deg}(p)<m$. Let $a_{1}, \ldots, a_{n+m} \in \operatorname{dom}(f)$ be distinct real algebraic numbers with $f\left(a_{1}\right), \ldots, f\left(a_{n+m}\right) \in \mathbb{Q}$. There are co-prime polynomials \tilde{p}, \tilde{q} of $\operatorname{deg}(\tilde{p})<n, \operatorname{deg}(\tilde{q})<m$ with coefficients in the algebraic field extension $\mathbb{Q}\left(a_{1}, \ldots, a_{n+m}\right)$ such that, for all $x \in \operatorname{dom}(f)=\{x: q(x) \neq 0\} \subseteq \mathbb{R}$, it holds $f(x)=\tilde{f}(x):=\tilde{p}(x) / \tilde{q}(x)$.
d) Continuing c), let $d \geq \max _{i} \operatorname{deg}\left(a_{i}\right)$. Then $f(x) \notin \mathbb{Q}$ for all transcendental $x \in \operatorname{dom}(f)$ as well as for all $x \in \mathbb{A}$ of $\operatorname{deg}(x)>D:=d^{n+m} \cdot \max \{n-1, m-1\}$.

Theorem 6.2. The set \mathbb{Q} of rationals is semi-decidable and undecidable yet strictly 'easier' than $\mathbb{H}: \mathbb{A}$ remains undecidable to a machine with oracle access to \mathbb{Q}.

7 Computable Analysis vs. Algebraic Computability

Theorem 7.1. a) Let $f: \subseteq \mathbb{R}^{k} \rightarrow \mathbb{R}$ be continuous and computable by a BSS machine \mathcal{M} without real constants. Then f is $\left(\rho^{k} \rightarrow \rho\right)$-computable with oracle access to the Halting problem.
b) To every ℓ there exists a C^{ℓ} total function $f:[0,1] \rightarrow \mathbb{R}$ computable by a constant-free BSS machine which is not $(\rho \rightarrow \rho)$-computable.

Fig. 4. A piecewise linear and a C^{k} unit pulse, and a non-overlapping superposition by scaled shifts

References

1. M. Ziegler, V. Brattka: "Computability in Linear Algebra"; pp.187-211 in Theoretical Computer Science vol. 326 (2004).
2. M. Ziegler: "Real Computation with Least Discrete Advice: A Complexity Theory of Nonuniform Computability", pp.1108-1139 in Annals of Pure and Applied Logic vol.163:8 (2012).
3. A. Pauly, M. Ziegler: "Relative Computability and Uniform Continuity of Relations", arXiv:1105.3050
4. L. Blum, F. Cucker, M. Shub, S. Smale: "Complexity and Real Computation", Springer (1998).
5. W.M. Koolen, M. Ziegler: "Kolmogorov Complexity Theory over the Reals", pp.153-169 in Proc. 5th Int. Conf. on Computability and Complexity in Analysis, Electronic Notes in Theoretical Computer Science vol. 221 (2008).
6. V. Brattka, P. Hertling, K. Weihrauch: "Tutorial on Computable Analysis", pp.425-491 in New Computational Paradigms (2008).
7. K. Weihrauch: "Computable Analysis", Springer (2000).
8. P. Boldi, S. Vigna: "Equality is a Jump", pp.49-64 in Theoretical Computer Science vol. 219 (1999).
9. K. Meer, M. Ziegler: "An Explicit Solution to Post's Problem over the Reals", pp.3-15 in Journal of Complexity vol. 24 (2008).
