
1 Recap on Recursive Analysis

1.1 Notions of computability for real numbers

Definition 1.1. a) Call x∈ R binarily computable iff there exists a computable sequence bn ∈
{0,1}, n≥−N, (i.e. a function b: {−N,−N+1, . . . ,0,1,2, . . .}→{0,1}) such that∑∞

n=−N bn2−n.
b) Call x∈ R computable iff there exists a computable integer sequence(cn)n

such that|x−cn/2n+1| ≤ 2−n.
c) LetDn := {c/2n | c∈ Z} andD :=

⋃
nDn denote the set ofdyadic rationals.

d) Call x∈ R Cauchy-computable iff there exist computable sequences qn,εn ∈Q

such that|x−qn| ≤ εn → 0 as n→ ∞.
e) Call x∈ R naively computable iff there exists a computable sequence qn ∈Q

such that qn → x as n→ ∞.
f) A sequence sn ∈ {1,0, 1̄}, n≥−N, is called asigned digit expansion of ∑∞

n=−N sn2−n.
Encoded over{0,1}ω,

(
bin(N),(sn)n

)
is a ρsd–name of x.

Call a sequence(bn)n as in a) (encoded over{0,1}ω) a ρb–name of x;
and(cn)n as in b) aρ–name of x.
A pair (qn)n and(εn)n of sequences as in d) is aρC–name of x.
A sequence(qn)n as in e) is aρn–name of x.

Lemma 1.2. a) Every binarily computable real has a computable signed digit expansion.
b) Every real with a computable signed digit expansion is computable.
c) Every computable real is Cauchy-computable d) and vice versa.
e) (Cauchy-)computability implies naive computability,

Example 1.3 a) Every rational number x∈Q is binarily computable.
b)

√
2 andπ are (Cauchy-)computable real numbers.

c) For H ⊆ N the Halting problem,∑n∈H 2−n is not binarily computable
d) but naively computable.

1.2 Computing functions and relations on a continuous universe

Definition 1.4. a) Amultivalued (possibly partial) function f:⊆ X ⇉Y (akarelation or mul-
tifunction) is a subset of X×Y.
We writedom( f ) := {x∈ X | ∃y∈Y : (x,y) ∈ f} and f(x) = {y∈Y | (x,y) ∈ f}.

b) AType-2 Machine has an infinite read-only input tape, an infinite one-way output tape, and
an unbounded work tape.
It computes a (possibly partial) function F:⊆ {0,1}ω →{0,1}ω.

c) A representation of a set X is a partial surjective mappingα :⊆ {0,1}ω → X.
d) Fix representationsα of X andβ of Y and a (possibly partial and multivalued) function

f :⊆ X ⇉Y.
A (α→β)–realizer of f is a (partial but single-valued) function F:⊆ {0,1}ω →{0,1}ω with
f
(
α(σ̄)

)
∋ β

(
F(σ̄)

)
for everyσ̄ ∈ dom(F) := {σ̄ | α(σ̄) ∈ dom( f )}.



e) A function as in d) is(α→β)–computable if it has a computable realizer in the sense of b).
(We simply saycomputable if α,β are clear from context.) It is(α→β)–continuous if it has
a continuous realizer.

f) Let αi be representations for Xi, i ∈ I ⊆ N, and〈 · | · 〉 : N×N→ N a computable surjective
pairing function. Then(σm)m is a

(
∏i∈I αi

)
–name of(xi)i ∈ ∏i Xi iff (σ〈i,n〉)n is anαi–name

of xi ∈ Xi for every i∈ I.

Example 1.5 a) Letα,β,γ denote representations of X,Y,Z, respectively. If f:⊆X ⇉Y is(α→
β)–computable and g:⊆Y ⇉ Z is (β→γ)–computable, then so is their composition

g◦ f :=
{
(x,z)

∣∣x∈ X,z∈ Z, f (x)⊆ dom(g), ∃y∈Y : (x,y) ∈ f ∧ (y,z) ∈ g} . (1)

b) A single-valued total real function f: [0,1]→ R is (ρ→ρ)–computable if some Type-2 ma-
chine can map everyρ–name(cn)n of some x∈ [0,1] to a ρ–name(c′m)m of f(y).

c) Addition and multiplication are(ρ×ρ→ρ)–computable;
inversionR\{0} ∋ x 7→ 1/x is (ρ→ρ)–computable.

d) Every polynomial with computable coefficients is computable; and vice versa.
e) Let(an)n denote a computable sequence, R:= 1/ limsupn

n
√
|an| and0< r <R. Then[−r, r]∋

x 7→ ∑
n

anxn is computable. In particularexp,sin,cos, ln(1+x) are computable.

f) Fix ε > 0. The multifunctions̃gnε : R ⇉ {−1,+1} with ε > x 7→ −1 and−ε < x 7→ +1 is
computable.

g) Any x∈ R is binarily computable iff it is computable.

Theorem 1.6. a) Every (oracle-)computable F:⊆ {0,1}ω →{0,1}ω is continuous.
b) To every continuous F:⊆ {0,1}ω → {0,1}ω, there exists an oracle relative to which F be-

comes computable.
c) Every oracle-computable f: [0,1]→ R is continuous!
d) There exists a computable sequence of (degrees and coefficient lists of) univariate dyadic

polynomials Pn ∈ D[X] with
∥∥Pn(x)−|x|

∥∥≤ 2−n on [−1,+1].
e) Fix an oracleO. Continuous (total) f: [0,1]→R is computable relative toO iff there exists

a sequence Pn ∈ Dn+1[X] computable relative toO such that‖ f −Pn‖∞ ≤ 2−n.
f) To every continuous f: R→R there is an oracle relative to which f becomes computable.

1.3 Encoding functions and closed subsets

Definition 1.7. a) A [ρd→ρ]–name of f∈C(Rd) is a double sequence
Pn,m ∈ D[X1, . . . ,Xd] with | f (x)−Pn,m(x)| ≤ 2−n for all ‖x‖ ≤ m.

b) A closed set A⊆ Rd is computableif the function

distA : Rd ∋ x 7→ min
{
‖x−a‖ : a∈ A

}
∈ R∪{∞} =: R (2)

is computable. Aψd–name of A∈A
(d) is a [ρd→ρ]–name ofdistA,

whereA(d) denotes the space of closed subsets ofRd.

c) A ψd
<–name of A is a

(
∏m∈Nρd

)
–name of some sequence xm ∈ A dense in A.



d) A ψd
>–name of A are two sequences qn ∈Qd andεn ∈Q such that

Rd \A =
⋃

n
B(qn,εn) where B(x, r) := {y : ‖x−y‖< r} . (3)

e) Aρ<–name of x∈ R is a sequence(qn)⊆Q with x= supnqn;
a ρ>–name of x∈ R is a sequence(qn)⊆Q with x= infnqn.

f) For representationsα,β of X letα⊓β := (α×β)
∣∣∆X , where∆X := {(x,x) | x∈ X}.

g) Writeα � β if id : X → X is (α→β)–computable.

h) We say that U⊆ X is α–r.e. if there exists a Turing machine which terminates precisely on
input of allα–names of x∈U and diverges on allα–names of x∈ X \U.

Theorem 1.8. a) It holdsρ � ρ<⊓ρ> � ρ.

b) Every(ρ→ρ<)–computable f: [0,1]→ R is lower semi-continuous.

c) A set A∈A(d) is ψd
>–computable iffRd \A is ρd–r.e.

d) Let‖ · ‖ in Equation 3 denote any fixed computable norm. Let‖ · ‖′ denote some other norm
andψ′d

> the induced representation. Thenψd
> � ψ′d

> .

e) It holdsψd � ψd
<⊓ψd

> � ψd.
Moreover A isψd

<–computable iffdistA is (ρd→ρ>)–computable;
and A isψd

>–computable iffdistA is (ρd→ρ<)–computable.
In particular ψd–computability is invariant under a change of computable norms.

f) UnionA(d)×A(d) ∋ (A,B) 7→ A∪B∈A(d) is (ψd×ψd→ψd)–computable;
but intersection is not.

g) Closed image C(Rd→Rk)×A
(d) ∋ ( f ,A) 7→ f [A]∈A

(k) is ([ρd→ρk]×ψd
<,ψk

<)–computable.

h) Preimage C(Rd→Rk)×A
(k) ∋ ( f ,B) 7→ f−1[B]∈A

(d) is ([ρd→ρk]×ψk
>,ψd

>)–computable.

j) { /0} is ψd
>

∣∣[0,1]d–r.e.

2 (In-)Computability in Linear Algebra and Geometry

Common algorithms (e.g. Gaussian Elimination) generally pertain to the Blum-Shub-Smale
model (equivalently:real-RAM) of real computation — and lead to difficulties when imple-
mented.

Definition 2.1. a) For a set S⊆ Rd, its convex hullis the least convex set containing S:

chull(S) :=
⋂{

C : S⊆C⊆ Rd,C convex
}

.

A polytopeis the convex hull of finitely many points,chull({p1, . . . , pN}). For a convex set C,
point p∈ C is calledextreme(written “p ∈ ext(C)”) if it does not lie on the interior of any
line segment contained in C:

p= λ ·x+(1−λ) ·y ∧ x,y∈C ∧ 0< λ < 1 ⇒ x= y .



b) For a set X, let
(X

k

)
:=

{
{x1, . . . ,xk} : xi ∈ X pairwise distinct

}
. Convex Hull, as understood

in computational geometry, is the problem

extchullN :

(
Rd

N

)
∋ {x1, . . . ,xN} 7→

{
y extreme point ofchull(x1, . . . ,xN)

}
(4)

of identifying the extreme points of the polytopeC spanned by given pairwise distinct x1, . . . ,xN.

c) For 1 ≤ j ≤ n let gj : Rd ∋ x 7→ a j0 +∑i xi · a ji ∈ R ((a j1, . . . ,a jd) 6= 0) denote an affine
linear function and Hj =g−1

j (0) its induced oriented hyperplane, H+j =g−1
j (0,∞) the positive

halfspace and H−j = g−1
j (−∞,0) the negative one. For x∈ Rd,

π(x) =
(

sgng j(x)
)

j=1,...,n
∈ {−1,0,+1}n

is called itsposition vector. A cell ofH = {H1, . . . ,Hn} is a subsetπ−1(σ) ofRd for some
σ ∈ {−1,+1}n. Point Location is the problem of identifying, to fixedH and upon input of
some point x, the cell that x lies in, i.e., of computing the function

PointlocH : Rd \
⋃

H→{−1,+1}n, x 7→ π(x) . (5)

d) Letdetd : Rd×d → R denote the determinant mapping andrankd,k : Rd×k → N the rank.
Moreover abbreviateGrk(V) :=

{
U ⊆V lin.subspace,dim(U)= k

}
andGr(V)=

⋃
k Grk(V).

Finally, GramSchmidtd,k : rank−1
d,k[k]→ Rd×k is the mapping induced by the Gram–Schmidt

orthonormalization process.

e) Consider the multifunctions

LSolved,k : rank−1
d,k[{0,1, . . . ,k−1}] ∋ A Z⇒ ker(A)\{0}

andLSolve′d,k :⊆ Rd×(k+1) ∋ (A,b) Z⇒
{

x | A ·x= b
}

.

f) Consider the multifunctionsSomeEVecd : Rd×(d+1)/2 ∋ A Z⇒
{

x 6= 0 | ∃λ : A · x = λx
}

and
EVecBased : Rd×(d+1)/2 ∋ A Z⇒

{
O∈ O(Rd) | O† ·A ·O= diag(· · ·)

}
.
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Proposition 2.2. a) extchullN is discontinuous, hence incomputable;

b) For anyH 6= /0, PointlocH is discontinuous, hence incomputable;

c) detd andGramSchmidtd,k are computable;

d) rankd,k is discontinuous (hence incomputable) but(ρd×k,ρ<)–computable.

e) Linear independence
{
(x1, . . . ,xk) ∈ Rd×k linearly independent

}
is ρd×k–r.e.

f) LSolved,k andSomeEVecd are uncomputable.

Theorem 2.3. a) dimd : Gr(Rd)→{0,1, . . . ,d} is (ψd
<,ρ<)–computable

b) and(ψd
>,ρ>)–computable; that is,(ψd,ρ)–computable!

Lemma 2.4. a) The generalized determinant is(ρd×k,ρ)–computable, namely the mapping
Detd×k : Rd×k ∋ (a1, . . . ,ak) 7→ max

{
|det(aj1, . . . ,a jd)| : 1≤ j1 ≤ ·· · ≤ jd ≤ k

}
.

b) Rd×k ∋ A 7→ range(A) ∈A(d) is (ρd×k,ψd
<)–computable.

c) Rd×k ∋ A 7→ kern(A) ∈A(k) is (ρd×k,ψk
>)–computable.

d) Rd×k∩ rank−1[k] ∋ A 7→ range(A) ∈A(d) is (ρd×k,ψd
>)–computable.

e) Orthogonal complement, i.e. the mappingGr(Rd) ∋ L 7→ L⊥ ∈ Gr(Rd), is
both(ψd

<,ψd
>)–computable and(ψd

>,ψd
<)–computable.

f) The multivalued mappingBasisd,k : Grk(Rd) ∋ L Z⇒
{

B∈ Rd×k : range(B) = L
}

is (ψd
<,ρd×k)–computable.

Theorem 2.5. For fixed integers0≤ k≤ d, the following representations
of Grk(Rd) are uniformly equivalent: A name of L∈ Grk(Rd) is

a) a ρd×k-name for some basis x1, . . . ,xk ∈ Rd for L;

b) same for an orthonormal basis;

c) a ρd×m-name (m∈ N arbitrary) for some real d×m-matrix B with L= range(B);

d) a ψd
<–name of dL, i.e., approximations to dL from above

e) aψd
>–name of dL, i.e., approximations to dL from below

f) a ρm×d-name (m∈ N arbitrary) for some real m×d-matrix A with L= kern(A);

a’)–f ’) similarly, but for L′ := L⊥ and k′ := d−k instead of L and k.

Fact 2.6 (E. Specker 1967)LetCd[Z] denote the vector space of monic polynomials of degree
d. The mappingCd ∋ (z1, . . . ,zd) 7→∏d

j=1(Z−zj)∈Cd[Z] has a computable multivalued inverse.

Lemma 2.7. a) For d∈ N, given x,y1, . . . ,yd ∈ R andν := Card{1≤ i ≤ d : x= yi},
one can compute(i1, . . . , iν) with 1≤ i1 < · · ·< iν ≤ d and x= yi1 = · · ·= yiν.

b) Given x1, . . . ,xd ∈ R and k:= Card{x1, . . . ,xd},
one can computeν1, . . . ,νd ∈ N with ν j = Card{i : 1≤ i ≤ d,xi = x j}.



Theorem 2.8. a) Given aρd·(d−1)/2–name of a symmetric real d×d–matrix A,
a d–tuple(λ1, . . . ,λd) of its eigenvalues with multiplicities is multivaluedρd–computable.

b) Given aρd·(d−1)/2–name of a symmetric real d×d–matrix A and given its numberCardσ(A)
of distinct eigenvalues, one can diagonalize A in the sense of ρd×d–computing an orthonor-
mal basis of eigenvectors.

c) Given aρd·(d−1)/2–name of a symmetric real d×d–matrix A and given the integer

⌊log2m⌋, where m(A) := min
{

dimkern(A−λ · id) : λ ∈ σ(A)
}

∈ {1, . . . ,d}

denotes the multiplicity of some least-degenerate eigenvalue, one canρd–compute some
eigenvector of A.

Definition 2.9. For 1≤ k≤ d integers letClassd,k(x1, . . . ,xd) :=
{

j : 1≤ j ≤ d,x j = xk}
and consider the multivalued mapping

SomeClassd : Rd ∋ (x1, . . . ,xd) Z⇒
{
Classd,k(x1, . . . ,xd) : 1≤ k≤ d

}

yielding, forsomek, the set of all indices i with xi = xk.

Lemma 2.10. Let x1, . . . ,xd ∈ R and m:= min1≤k≤d CardClassd,k(x) as above.

a) For each1≤ k, ℓ≤ d it either holdsClassd,ℓ(x) = Classd,k(x) or Classd,ℓ(x)∩Classd,k(x) = /0.
Also,

⋃
kClassd,k(x) = [d].

b) Consider I⊆ [d] such that

xi 6= x j for all i ∈ I and all j ∈ [d]\ I . (6)

Then I∩Classd,k(x) 6= /0 impliesClassd,k(x)⊆ I.
Moreover1≤ Card(I)< 2m implies I= Classd,k(x) for some k.

c) Suppose k∈ N is such that k≤ m< 2k.
Then there existsℓ such that I:= Classd,ℓ(x) satisfies (6) and has k≤ Card(I)< 2k.

Conversely every I⊆ [d] with k≤ Card(I)< 2k satisfying (6) has I= Classd,ℓ(x) for someℓ.

d) Given aρd–name of(x1, . . . ,xd) and given k∈ N with k≤ m< 2k,
one can computably find someClassd,ℓ(x).

3 Continuity for Multivalued Functions

Definition 3.1. Let (X,d) and (Y,e) denote metric spaces and abbreviate B(x, r) := {x′ ∈ X :
d(x,x′)< r} ⊆X andB(x, r) := {x′ ∈ X : d(x,x′)≤ r}; similarly for Y . Now fix some f:⊆ X ⇉Y
and call(x,y) ∈ f a point of continuity of f if the following formula holds:

∀ε > 0 ∃δ > 0 ∀x′ ∈ B(x,δ)∩dom( f ) ∃y′ ∈ B(y,ε)∩ f (x′) .

a) Call f strongly continuous if every(x,y) ∈ f is a point of continuity of f :

∀x∈ dom( f ) ∀y∈ f (x) ∀ε > 0 ∃δ > 0 ∀x′ ∈ B(x,δ)∩dom( f ) ∃y′ ∈ B(y,ε)∩ f (x′).



Fig. 1.a) For a relationg (dark gray) to tightenf (light gray) means no more freedom (yet the possibility) to choose somey∈ g(x)
than to choose somey∈ f (x) (whenever possible). b) Illustratingε–δ–continuity in(x,y) for a relation (black)

b) Call f weakly continuous if the following holds:

∀x∈ dom( f ) ∃y∈ f (x) ∀ε > 0 ∃δ > 0 ∀x′ ∈ B(x,δ)∩dom( f ) ∃y′ ∈ B(y,ε)∩ f (x′).

c) Call f uniformly weakly continuous if the following holds:

∀ε > 0 ∃δ > 0 ∀x∈ dom( f ) ∃y∈ f (x) ∀x′ ∈ B(x,δ)∩dom( f ) ∃y′ ∈ B(y,ε)∩ f (x′).

d) Call f nonuniformly weakly continuous if the following holds:

∀ε > 0 ∀x∈ dom( f ) ∃δ > 0 ∃y∈ f (x) ∀x′ ∈ B(x,δ)∩dom( f ) ∃y′ ∈ B(y,ε)∩ f (x′).

e) Call f Henkin-continuous if the following holds:
( ∀ε > 0 ∃δ > 0

∀x∈ dom( f ) ∃y∈ f (x)

)
∀x′ ∈ B(x,δ)∩dom( f ) ∃y′ ∈ B(y,ε)∩ f (x′) . (7)

f) Some g:⊆ X ⇉Y tightens f (and f loosens g)
if bothdom( f )⊆ dom(g) and∀x∈ dom( f ) : g(x)⊆ f (x) hold.

Fig. 2. a) Example of a uniformly weakly continuous but not weakly continuous relation. b) A semi-uniformly strongly continu-
ous relation which is not uniformly strongly continuous. c)A compact, weakly and uniformly weakly continuous relationwhich
is not computable relative to any oracle.



Lemma 3.2. a) Let f be uniformly weakly continuous and suppose that f is pointwise compact
in the sense that f(x)⊆Y is compact for every x∈ X. Then f is weakly continuous.

b) Let f be nonuniformly weakly continuous anddom( f ) compact.
Then f is uniformly weakly continuous.

c) If f is Henkin-continuous and tightens g, then also g is Henkin-continuous.
d) If f and g:⊆Y ⇉ Z are Henkin-continuous, then so is g◦ f :⊆ X ⇉ Z.
e) A function F:⊆ {0,1}ω →{0,1}ω is an(α,β)–realizer of f

iff F tightensβ−1◦ f ◦α iff β◦F ◦α−1 tightens f .
f) If range( f )⊆ dom(g) holds and if both f and g map compact sets to compact sets,

then so does g◦ f .

Proposition 3.3. a) The inverseρ−1
b : [0,1]⇉ {0,1}ω of the binary representation restricted to

[0,1] is not weakly continuous.
b) Every x∈ R has a signed digit expansion

x = ∑∞
n=−N an2−n, an ∈ {0,1, 1̄} (8)

with noconsecutive digit pair11 nor 1̄1̄ nor 11̄ nor 1̄1 .
c) For k∈ N, each|x| ≤ 2

3 ·2−k admits such an expansion with an = 0 for all n ≤ k.
And, conversely, x= ∑∞

n=k+1 an2−n with (an,an+1) ∈ {10 , 1̄0 ,01 ,01̄,00} for every n
requires|x| ≤ 2

3 ·2−k.
d) Let x= ∑∞

n=−N an2−n be a signed digit expansion and k∈ N

such that(an,an+1) ∈ {10 , 1̄0,01 ,01̄,00} for each n> k.
Then every x′ ∈ [x−2−k/3,x+2−k/3] admits a signed digit expansion
x′ = ∑∞

n=−N bn2−n with an = bn∀n≤ k.
d) LetΣ := {0,1, 1̄, . }.

The inverseρ−1
sd : R⇉ Σω of the signed digit representation is Henkin-continuous.

Theorem 3.4. Let K⊆ R be compact and f: K ⇉ R computable relative to some oracle.
Then f is Henkin-continuous.

Example 3.5 A compact total Henkin–continuous but not relatively computable relation.
(Dashed lines indicate alignment and are not part of the graph)



4 Computational Complexity

Definition 4.1. Call f : [0,1]→ R computable in time t(n) and space s(n) if some Turing ma-
chine can, upon input of everyρsd–name of every x∈ dom( f ) and of n in unary, produce within
these ressource bounds some c∈ Z such that| f (x)−c/2n+1| ≤ 2−n.

Lemma 4.2. If f is (even oracle-)(ρD,ρD)–computable in time t(n), then µ:N∋ n 7→ t(n+2)∈
N constitutes a modulus of uniform continuity to f , i.e.,|x−x′| ≤ 2−µ(n) ⇒ | f (x)− f (x′)| ≤ 2−n.

Example 4.3 The following function is computable in exponential time, but not in polynomial
time — and oracles do not help: f: (0,1] ∋ x 7→ 1/ ln(e/x) ∈ (0,1], f (0) = 0.
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Fig. 3. a) (Part of) the graph off (x) = 1/ ln(e/x) from Example 4.3 demonstrating its exponential rise from 0.
b) Lower bound techniques in real function computation;H ⊆N is the Halting problem andN⊇ E ∈ EXP\P.

In particular functional evaluation( f ,x) 7→ f (x) is not computable within time bounded only
in n, the output precision, even when restricting to smooth functions f : [0,1]→ [0,1].



5 Recap on Blum-Shub-Smale (BSS) Machines

A BSS machineM (overR) can in each step add, subtract, multiply, divide, and branch on the
result of comparing two reals. Its memory consists of an infinite sequence of cells, each capable
of holding a real number and accessed via two special index registers (similar to a two-head
Turing machine). A program forM may store a finite number of real constants. The notions
of decidabilityandsemi-decidabilitytranslate straightforwardly from discreteL ⊆ {0,1}∗ and
L ⊆ N∗ to real languagesL⊆ R∗. Computing a functionf :⊆ R∗ →R∗ means that the machine,
given x ∈ dom( f ), outputs f (x) within finitely many steps and terminates while diverging on
inputsx 6∈ dom( f ).

Example 5.1 a) rank :Rn×m → N is uniformly BSS–computable (in timeO(n3+m3))
b) The multivalued mappingRn×m ∋ A Z⇒

{
(b1, . . .) basis ofkern(A)

}
∈ Rm×∗ is uniformly

BSS–computable (in timeO(n3+m3)).
c) The multivalued mappingRn×m ∋ A Z⇒

{
(c1, . . .) basis ofrange(A)

}
∈ Rn×∗ is uniformly

BSS–computable (in timeO(n3+m3)).
d) The graph of the square root function is BSS–decidable.
e) Q is BSS semi-decidable; and so is the setA of algebraic reals.

f) The algebraic degree functiondeg :A→ N is BSS–computable.
g) A languageL ⊆ R∗ is BSS semi-decidable iffL = range( f ) for some total computable

f : R∗ → R∗.
h) The real Halting problemH is not BSS–decidable, where

H :=
{
〈M,x〉 : BSS machineM terminates on input x

}

Definition 5.2. Fix a field F⊆ R and d∈ N. A set

B =
{

x∈ Rd : p1(x) = . . .= pk(x) = 0 ∧ q1(x)> 0∧ . . .∧qℓ(x)> 0
}

(9)

of solutions to a finite system of polynomial (in)equalitieswith p1, . . . , pk,q1, . . . ,qℓ ∈F[X1, . . . ,Xd]
is calledbasic semi-algebraic overF.
A subset ofRd semi-algebraic overF is a finite union of ones that are basic semi-algebraic over
F. It is countably semi-algebraic overF if the union involves countably many members, all being
basic semi-algebraic over F.

If is known that every basic semi-algebraic set has at most finitely many connected components.

Lemma 5.3. For f :⊆ R∗ →R∗, and c1, . . . ,c j ∈ R, consider the following claims:

a) f is computable by a BSS Machine with constants c1, . . . ,c j ∈ R.
b) There is an integer sequence(dn)n such thatdom( f ) =

⊎
nBn is the countable disjoint union

of setsBn ⊆ Rdn semi-algebraic over field extension F:=Q(c1, . . . ,c j), and each restriction
f
∣∣
Bn

, n∈ N, a quolynomial with coefficients from F.
c) There exists cj+1∈R such that f is computable by a BSS Machine with constants c1, . . . ,c j ,c j+1.



Then a) implies b) implies c).

Corollary 5.4. a) The square root function[0,∞) ∋ x 7→ √
x≥ 0 is not BSS–computable.

b) The sequenceN ∋ n 7→ e
√

n is not BSS–computable.
c) Q andA are not BSS–decidable
d) nor is real integer linear programming{〈A,b〉 | A∈ Rn×m,b∈ Zm,∃x∈ Zn : A ·x= b}.

Fact 5.5 (Lindemann–Weierstraß) Let a1, . . . ,an be algebraic yet linearly independent overQ.
Then ea1, . . . ,ean are algebraically independent overQ.

6 Post’s Problem over the Reals

Proposition 6.1. a) Let x∈R, ε > 0, N∈ N. There exists a∈ A of deg(a) = N with |x−a|< ε.

b) Let f : dom( f )⊆ R→ R be analytic and non-constant, T⊆ dom( f ) uncountable.
Then, f maps some x∈ T to a transcendental value, that is, f(x) 6∈ A.

c) Fix non-constant f= p/q∈ R(X) with polynomials p,q ofdeg(p)< n, deg(p)< m.
Let a1, . . . ,an+m ∈ dom( f ) be distinct real algebraic numbers with f(a1), . . . , f (an+m) ∈Q.
There are co-prime polynomials̃p, q̃ ofdeg(p̃)< n, deg(q̃)< m with coefficients in the alge-
braic field extensionQ(a1, . . . ,an+m) such that, for all x∈ dom( f ) = {x : q(x) 6= 0} ⊆ R, it
holds f(x) = f̃ (x) := p̃(x)/q̃(x).

d) Continuing c), let d≥ maxi deg(ai). Then f(x) 6∈Q for all transcendental x∈ dom( f )
as well as for all x∈ A of deg(x)> D := dn+m ·max{n−1,m−1}.

Theorem 6.2. The setQ of rationals is semi-decidable and undecidable yet strictly ‘easier’
thanH: A remains undecidable to a machine with oracle access toQ.

7 Computable Analysis vs. Algebraic Computability

Theorem 7.1. a) Let f :⊆Rk →R be continuous and computable by a BSS machineM without
real constants. Then f is(ρk→ρ)–computable with oracle access to the Halting problem.

b) To everyℓ there exists a Cℓ total function f : [0,1]→ R computable by a constant-free BSS
machine which is not(ρ→ρ)–computable.

Fig. 4. A piecewise linear and aCk unit pulse, and a non-overlapping superposition by scaled shifts
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