Algebraic, Topological, and Physical Aspects of Computing

SS 2012, Exercise Sheet \#11

Recall the definition of the degree $[E: F]=\operatorname{dim}_{F}(E)$ of a field extension E over F.
Besicovitch has proven that

$$
\left[\mathbb{Q}\left(\sqrt[N_{1}]{p_{1}}, \sqrt[N_{2}]{p_{2}}, \ldots, \sqrt[N_{2}]{p_{d}}\right): \mathbb{Q}\right]=N_{1} \cdot N_{2} \cdots N_{d} ;
$$

cf. [Bes40, Theorem 2] and see also [Alb03, bottom of p.2].
For fields $\mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{R}$ and $0<r \in \mathbb{Q}$, let

$$
\mathbb{F}(\sqrt[*]{r}):=\mathbb{F}\left(\left\{r^{\frac{1}{n}}: n \in \mathbb{N}\right\}\right)
$$

where the corresponding fractional powers are understood as positive real numbers.
The goal of this exercise is to prove that $\mathbb{Q}(\sqrt[*]{2})$ and $\mathbb{Q}(\sqrt[*]{3})$ are semi-decidable, undecidable, and incomparable.

EXERCISE 11:

a) If $\left(\frac{r}{s}\right)^{1 / n} \in \mathbb{Q}$ for $n \in \mathbb{N}$ and coprime $r, s \in \mathbb{N}$, then $r^{1 / n}, s^{1 / n} \in \mathbb{N}$.
b) For $n_{1}, \ldots, n_{k} \in \mathbb{N}$ and squarefree $t \in \mathbb{N}, \mathbb{F}(\sqrt[n_{1}]{t}, \ldots, \sqrt[n_{k}]{t})=\mathbb{F}(\sqrt[N]{t})$ where $N:=\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$ denotes the least common multiple.
c) For distinct prime numbers $p_{1}, \ldots, p_{d}, p_{d+1}$ and $n \in \mathbb{N}$, it holds

$$
\left[\mathbb{Q}\left(\sqrt[*]{p_{1}}, \sqrt[*]{p_{2}}, \ldots, \sqrt[*]{p_{d}}, \sqrt[*]{p_{d+1}}\right): \mathbb{Q}\left(\sqrt[*]{p_{1}}, \sqrt[*]{p_{2}}, \ldots, \sqrt[*]{p_{d}}\right)\right]=\infty
$$

d) To any $n \in \mathbb{N}, \varepsilon>0$, and $x \in \mathbb{R}$, there exists $y \in \mathbb{Q}(\sqrt[*]{2})$ of degree at least n over $\mathbb{Q}(\sqrt[*]{3})$ such that $|x-y|<\varepsilon$. Let $f \in \mathbb{R}(X), f=\frac{p}{q}$ with polynomials p, q of degree less than n and m, respectively. Let $a_{1}, \ldots, a_{n+m} \in \mathbb{Q}(\sqrt[*]{2}) \cap \operatorname{dom}(f)$ be distinct with $f\left(a_{i}\right) \in \mathbb{Q}(\sqrt[*]{3})$.
e) There are co-prime polynomials \tilde{p}, \tilde{q} of $\operatorname{deg}(\tilde{p})<n, \operatorname{deg}(\tilde{q})<m$ with coefficients in the algebraic field extension $\mathbb{Q}\left(\sqrt[*]{3} ; a_{1}, \ldots, a_{n+m}\right)$ such that, for all $x \in \operatorname{dom}(f)=\{x: q(x) \neq 0\} \subseteq \mathbb{R}$, it holds $f(x)=\tilde{f}(x):=\tilde{p}(x) / \tilde{q}(x)$.
f) Let $d:=\max _{i} \operatorname{deg}_{\mathbb{Q}(\sqrt[*]{3})}\left(a_{i}\right)$. Then $f(x) \notin \mathbb{Q}(\sqrt[*]{3})$ for all transcendental $x \in \operatorname{dom}(f)$ as well as for all $x \in \mathbb{Q}(\sqrt[*]{2})$ of $\operatorname{deg}_{\mathbb{Q}(\sqrt[*]{3})}(x)>D:=d^{n+m} \cdot \max \{n-1, m-1\}$.

Literatur

[Alb03] T. Albu: "Cogalois Theory", Dekker (2003).
[Bes40] A.S. Besicovitch: "On the Linear Independence of Fractional Powers of Integers", pp.3-6 in J. London Math. Soc. vol. 15 (1940).

