Algebraic, Topological, and Physical Aspects of Computing

SS 2012, Exercise Sheet #11

Recall the definition of the degree $[E : F] = \dim_F(E)$ of a field extension *E* over *F*. BESICOVITCH has proven that

$$\left[\mathbb{Q}\left(\sqrt[N_{4}]{p_{1}},\sqrt[N_{2}]{p_{2}},\ldots,\sqrt[N_{d}]{p_{d}}\right):\mathbb{Q}\right] = N_{1}\cdot N_{2}\cdots N_{d};$$

cf. [Bes40, THEOREM 2] and see also [Alb03, bottom of p.2]. For fields $\mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{R}$ and $0 < r \in \mathbb{Q}$, let

$$\mathbb{F}(\sqrt[s]{r})$$
 := $\mathbb{F}igl(igl\{r^{rac{1}{n}}:n\in\mathbb{N}igr\}igr)$

where the corresponding fractional powers are understood as positive real numbers. The goal of this exercise is to prove that $\mathbb{Q}(\sqrt[4]{2})$ and $\mathbb{Q}(\sqrt[4]{3})$ are semi-decidable, undecidable, and incomparable.

EXERCISE 11:

- a) If $(\frac{r}{s})^{1/n} \in \mathbb{Q}$ for $n \in \mathbb{N}$ and coprime $r, s \in \mathbb{N}$, then $r^{1/n}, s^{1/n} \in \mathbb{N}$.
- b) For $n_1, \ldots, n_k \in \mathbb{N}$ and squarefree $t \in \mathbb{N}$, $\mathbb{F}(\sqrt[n_k]{t}, \ldots, \sqrt[n_k]{t}) = \mathbb{F}(\sqrt[N]{t})$ where $N := \operatorname{lcm}(n_1, \ldots, n_k)$ denotes the *least common multiple*.
- c) For distinct prime numbers $p_1, \ldots, p_d, p_{d+1}$ and $n \in \mathbb{N}$, it holds

$$\left[\mathbb{Q}\left(\sqrt[s]{p_1}, \sqrt[s]{p_2}, \dots, \sqrt[s]{p_d}, \sqrt[s]{p_{d+1}}\right) : \mathbb{Q}\left(\sqrt[s]{p_1}, \sqrt[s]{p_2}, \dots, \sqrt[s]{p_d}\right)\right] = \infty$$

- d) To any $n \in \mathbb{N}$, $\varepsilon > 0$, and $x \in \mathbb{R}$, there exists $y \in \mathbb{Q}(\sqrt[4]{2})$ of degree at least *n* over $\mathbb{Q}(\sqrt[4]{3})$ such that $|x-y| < \varepsilon$. Let $f \in \mathbb{R}(X)$, $f = \frac{p}{q}$ with polynomials p, q of degree less than *n* and *m*, respectively. Let $a_1, \ldots, a_{n+m} \in \mathbb{Q}(\sqrt[4]{2}) \cap \text{dom}(f)$ be distinct with $f(a_i) \in \mathbb{Q}(\sqrt[4]{3})$.
- e) There are co-prime polynomials p̃, q̃ of deg(p̃) < n, deg(q̃) < m with coefficients in the algebraic field extension Q(^{*}√3; a₁,..., a_{n+m}) such that, for all x ∈ dom(f) = {x : q(x) ≠ 0} ⊆ ℝ, it holds f(x) = f̃(x) := p̃(x)/q̃(x).
- f) Let $d := \max_i \deg_{\mathbb{Q}(\sqrt[n]{3})}(a_i)$. Then $f(x) \notin \mathbb{Q}(\sqrt[n]{3})$ for all transcendental $x \in \text{dom}(f)$ as well as for all $x \in \mathbb{Q}(\sqrt[n]{2})$ of $\deg_{\mathbb{Q}(\sqrt[n]{3})}(x) > D := d^{n+m} \cdot \max\{n-1, m-1\}$.

Literatur

[Alb03] T. ALBU: "Cogalois Theory", Dekker (2003).

[Bes40] A.S. BESICOVITCH: "On the Linear Independence of Fractional Powers of Integers", pp.3-6 in *J. London Math. Soc.* vol.**15** (1940).