Algebraic, Topological, and Physical Aspects of Computing

EXERCISE 10:

a) Prove that the real Halting problem \mathbb{H} is not BSS-decidable, where

$$
\mathbb{H}:=\left\{\langle\mathbb{M}, \vec{x}\rangle: \text { BSS machine } \mathbb{M} \text { terminates on input } \vec{x} \in \mathbb{R}^{*}\right\}
$$

b) Prove that a non-empty real language $\mathbb{L} \subseteq \mathbb{R}^{*}$ is semi-decidable iff it coincides with the range of a computable total real function $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$. Hint: Tarski's quantifier elimination.
c) Formalize the problem of finding eigenvalues of real symmetric matrices and prove it BSS-incomputable.
d) A BSS-machine over \mathbb{C} (rather than \mathbb{R}) can in each step read, store, print, add, subtract, multiply, and divide two complex numbers; it may branch based on the result of comparing two complex numbers for equality only.
Is the following function computable by such a machine? Prove!

$$
\mathbb{C}^{n \times n} \ni A \Leftrightarrow\left\{B \in \mathbb{C}^{n \times n}: \operatorname{range}(B)=\operatorname{range}(A)^{\perp}\right\}
$$

e) Prove that \mathbb{N} is BSS-decidable over \mathbb{R}. In what running time? Is it decidable over \mathbb{C} ? Prove!
f) Prove the algebraic degree function $\operatorname{deg}: \mathbb{A} \rightarrow \mathbb{N}$ BSS-computable without constants.

