Algebraic, Topological, and Physical Aspects of Computing

SS 2012, Exercise Sheet \#6

EXERCISE 6:

a) Prove that integration, i.e. the following mapping, is $([\rho \rightarrow \rho] \times \rho \times \rho, \rho)$-computable:

$$
C(\mathbb{R}) \times \mathbb{R} \times \mathbb{R} \ni(f, a, b) \mapsto \int_{a}^{b} f(t) d t \in \mathbb{R}
$$

b) Generalize to indefinite and to higher dimensional integration. How do you represent domains?
c) Prove that $\{0\}$ is $\left.\psi_{>}^{d}\right|^{[0,1]^{d}}-$ r.e. and that the mapping $\left\{\{\vec{x}\}: \vec{x} \in[0,1]^{d}\right\} \ni\{\vec{x}\} \mapsto \vec{x} \in[0,1]^{d}$ is $\left(\psi_{>}^{d}, \rho^{d}\right)$-computable.
d) Derive from ρ and $\left[\rho^{d} \rightarrow \rho\right]$ representations γ and $[\gamma \rightarrow \gamma]$ for complex numbers and univariate continuous complex functions. Formalize and prove complex path integration computable.
e) Prove that the set \mathbb{C}_{c} of computable complex numbers is algebraically closed.

How about the set \mathbb{R}_{c} of computable reals?

