Algebraic, Topological, and Physical Aspects of Computing

SS 2012, Exercise Sheet #3

EXERCISE 3:

- a) Every $(\rho_{<} \rightarrow \rho_{<})$ -computable $f : [0,1] \rightarrow \mathbb{R}$ is nondecreasing. How about $(\rho_{>} \rightarrow \rho_{>})$ -computable f?
- b) $\mathbb{R}^2 \ni (x, y) \mapsto \max(x, y)$ is $(\rho_< \times \rho_< \rightarrow \rho_<)$ -computable and $(\rho_> \times \rho_> \rightarrow \rho_>)$ -computable; same for $(x, y) \mapsto \min(x, y)$.
- c) For every computable real $p \ge 1$ and $d \in \mathbb{N}$, the *p*-norm $\mathbb{R}^d \ni \vec{x} \mapsto \|\vec{x}\|_p = (\sum_j |x_j|^p)^{1/p}$ is (ρ^d, ρ) -computable a function.
- d) Show that $\psi^d_>$ -computability is independent of the computable norm underlying the distance function.
- e) Every nonempty $\psi_{<}^{d}$ -computable set contains a computable point. More uniformly, the multivalued mapping $\mathcal{A}^{(d)} \setminus \{\emptyset\} \ni A \Rightarrow A$ is $(\psi_{<}^{d}, \rho^{d})$ -computable.
- f) Is differentiation $C^1[0,1] \ni f \mapsto f' \in C[0,1] ([\rho \to \rho], [\rho \to \rho])$ -computable?