Algebraic, Topological, and Physical Aspects of Computing

SS 2012, Exercise Sheet #2

EXERCISE 1:

- f) Show that every $(\rho_n \rightarrow \rho_n)$ -computable $f : \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
- g) Formalize real computation by approximation up to relative error which for every fixed number coincides with (e.g. Cauchy) computability; show that addition is not computable in this sense.

EXERCISE 2:

Call $\vec{u} \in \{0,1\}^*$ an initial segment of $\vec{v} \in \{0,1\}^*$ (and write " $\vec{u} \sqsubseteq \vec{v}$ ") if there exists $\vec{w} \in \{0,1\}^*$ with $\vec{v} = \vec{u} \circ \vec{w}$. Similarly write " $\vec{u} \sqsubseteq \vec{v}$ " if $\vec{v} = \vec{u} \circ \vec{w}$ for $\vec{v} \in \{0,1\}^{\omega}$ and some $\vec{w} \in \{0,1\}^{\omega}$. For $\vec{\sigma} \in \{0,1\}^{\omega}$ abbreviate $\vec{\sigma}|_{\leq n} := (\sigma_1, \dots, \sigma_n) \in \{0,1\}^n$. We say that $f : \{0,1\}^* \to \{0,1\}^*$ is monotone if it holds

$$\forall \vec{u}, \vec{v}: \quad \vec{u} \sqsubseteq \vec{v} \ \Rightarrow \ f(\vec{u}) \sqsubseteq f(\vec{v}) \ .$$

- a) Suppose f is also unbounded on $\bar{\sigma} \in \{0,1\}^{\omega}$ in that $\lim_{n} |f(\bar{\sigma}|_{\leq n})| = \infty$. Show that there exists precisely one $\bar{\tau} \in \{0,1\}^{\omega}$ (denoted by $\tau = \sup_{n} f(\bar{\sigma}|_{\leq n})$) with $\forall n : f(\bar{\sigma}_{\leq n}) \sqsubseteq \bar{\tau}$.
- b) Suppose f is monotone. Prove that the following function $f_{\omega} :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ is continuous:

dom $(f_{\omega}) = \{\bar{\sigma} \mid f \text{ unbounded on } \bar{\sigma}\}, \qquad f_{\omega} : \bar{\sigma} \mapsto \sup_{n} f(\bar{\sigma}|_{\leq n})$

- c) Suppose $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ is continuous. Construct some monotone f with $f_{\omega}|_{\operatorname{dom}(F)} = F$.
- d) Every $(\rho \rightarrow \rho_{<})$ -computable $f : [0,1] \rightarrow \mathbb{R}$ is lower semi-continuous.