
10.07.12 | Komplexität | 272

Huffman Encoding

Let some text be given:

 How is such a text usually encoded?
 -> e.g.: Subset of ASCII-letters

 What might be an „optimal“ code?

Assumptions:
•  every letter si in the original text is replaced by a code li .
•  We are looking for an optimal code in the sense that this code minimizes the
 averaged code word length.

 The averaged code word length L is compiuted as follows:

€

L = pi ⋅ li
i=1

n

∑

10.07.12 | Komplexität | 273

Huffman Encoding

Rough description of the algorithm:

 1.) examine, how often each letter occurs in the original text.

 2.) build a so called Huffman Tree

 3.) build a table with so called Huffman Codes

10.07.12 | Komplexität | 274

Huffman Encoding

 1.) examine, which letter occurs how often in the given text

 go through the input text and count the occurrences of each letter.

 Example.: „test_string“

 letters _ e g i n r s t

 occurrences 1 1 1 1 1 1 2 3

10.07.12 | Komplexität | 275

Huffman Encoding

 2.) build the so called Huffman Tree

 Build the tree as follows: Firstly, each occuring letter is caught in its own tree.
 Thereafter, those two trees that have the smallest number of occurrences are
 brought together. The sum of the occurrences of the old roots is written into
 a new root node.
 Example.:

_
1

e
1

g
1

i
1

n
1

r
1

s
2

t
3

_
1

e
1

2

10.07.12 | Komplexität | 276

Huffman Encoding

g
1

i
1

n
1

r
1

s
2

t
3

_
1

e
1

2 2

2

4

7 4

11

10.07.12 | Komplexität | 277

Huffman Coding

 3.) build a table with the final Huffman Codes

000 _
001 e
010 g
011 n
10 t
110 s
1110 i
1111 r

Encoded text:

10001110100001101011111110011010

Observation: No code is prefix of another code.

10.07.12 | Komplexität | 278

Let Σ be the alphabet for which the code is to be generated. It contains
| Σ | = n letters (characters).

Lemma 1: Every inner node in a minimal prefix tree possesses two children.

Proof: Let us assume that a minimal tree T, which possesses an inner node
with only one child, exists. Then, we construct a tree T‘ with one node less:
We remove the single successor and replace it by its child-node.

For this new tree is valid: some encodings of some letters have been
shortened. This is a contradictoin to the assumption that the tree T was
minimal.

10.07.12 | Komplexität | 279

Lemma 2: Let si and sj be those letters with smallest occuring probability.
Then, si and sj have maximum depth in T.

Proof:
Assumption: there is a letter s that is placed in maximum depth, but not
having smallest occuring probability.
Then we exchange s with si or with sj and receive a smaller total encoding.

10.07.12 | Komplexität | 280

Optimality of Huffman-Coding

Theorem: The Huffman-Coding has minimal expected encoding length.
Proof by induction over |Σ|.
• Induction start for |Σ| ≤ 2 is clear.
• Now, let |Σ|>2 and let T be a tree, representing the optimal prefix code for Σ.
 • 1st observation: Every inner node in T has two children (otherwise
 contradiction to optimality).
 • 2nd observation: Let si and sj be the letters with smallest occuring
 probability. Then si and sj are in maximum depth in T
 (otherwise contradiction to optimality).
• Thus: si and sj are in T as in the Huffman-Tree
• Replace si and sj with a new letter s with
 Prob(s) = Prob(si) + Prob(sj).
• Induct.-assumption.: Remaining Huffman-Tree for new Σ is optimal
⇒ induction step

