Huffman Encoding

Let some text be given:
How is such a text usually encoded?
-> e.g.: Subset of ASCII-letters
What might be an „optimal" code?
Assumptions:

- every letter s_{i} in the original text is replaced by a code I_{i}.
- We are looking for an optimal code in the sense that this code minimizes the averaged code word length.

The averaged code word length L is compiuted as follows:

$$
L=\sum_{i=1}^{n} p_{i} \cdot l_{i}
$$

Huffman Encoding

Rough description of the algorithm:
1.) examine, how often each letter occurs in the original text.
2.) build a so called Huffman Tree
3.) build a table with so called Huffman Codes

Huffman Encoding

1.) examine, which letter occurs how often in the given text
go through the input text and count the occurrences of each letter.
Example.: „test_string"

Huffman Encoding

2.) build the so called Huffman Tree

Build the tree as follows: Firstly, each occuring letter is caught in its own tree. Thereafter, those two trees that have the smallest number of occurrences are brought together. The sum of the occurrences of the old roots is written into a new root node.
Example.:

Huffman Encoding

TECHNISCHE UNIVERSITAT DARMSTADT

Huffman Coding

3.) build a table with the final Huffman Codes

000	-
001	e
010	g
011	n
10	t
110	s
1110	i
1111	r

Encoded text:
10001110100001101011111110011010
Observation: No code is prefix of another code.

Let Σ be the alphabet for which the code is to be generated. It contains $|\Sigma|=n$ letters (characters).

Lemma 1: Every inner node in a minimal prefix tree possesses two children.
Proof: Let us assume that a minimal tree T, which possesses an inner node with only one child, exists. Then, we construct a tree T' with one node less: We remove the single successor and replace it by its child-node.

For this new tree is valid: some encodings of some letters have been shortened. This is a contradictoin to the assumption that the tree T was minimal.

Lemma 2: Let s_{i} and s_{j} be those letters with smallest occuring probability. Then, s_{i} and s_{j} have maximum depth in T .

Proof:
Assumption: there is a letter s that is placed in maximum depth, but not having smallest occuring probability.
Then we exchange s with s_{i} or with s_{j} and receive a smaller total encoding.

Optimality of Huffman-Coding
Theorem: The Huffman-Coding has minimal expected encoding length.
Proof by induction over | $\Sigma \mid$.

- Induction start for $|\Sigma| \leq 2$ is clear.
- Now, let $|\Sigma|>2$ and let T be a tree, representing the optimal prefix code for Σ.
- 1st observation: Every inner node in T has two children (otherwise contradiction to optimality).
- 2nd observation: Let s_{i} and s_{j} be the letters with smallest occuring probability. Then s_{i} and s_{j} are in maximum depth in T
(otherwise contradiction to optimality).
- Thus: s_{i} and s_{j} are in T as in the Huffman-Tree
- Replace s_{i} and s_{j} with a new letter s with
$\operatorname{Prob}(\mathrm{s})=\operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}\right)+\operatorname{Prob}\left(\mathrm{s}_{\mathrm{j}}\right)$.
- Induct.-assumption.: Remaining Huffman-Tree for new Σ is optimal
\Rightarrow induction step

