
Algorithmic Discrete Mathematics
Lecture Notes / July 3, 2012

The Traveling Salesman Problem

Outlook: Linear Programming

July 4, 2012 | Thorsten Ederer | 1



Preliminaries

Obligatory Question

Versteht hier jemand kein Deutsch?

July 4, 2012 | Thorsten Ederer | 2



The Traveling Salesman Problem

Informal Definition

Traveling Salesman
Given a set of cities, and known distances between each
pair of cities, find a tour that visits each city exactly once
and that minimizes the total distance travelled.

July 4, 2012 | Thorsten Ederer | 3



The Traveling Salesman Problem

Example in the Euclidean Plane

Given 10 cities and no obstacles . . .

July 4, 2012 | Thorsten Ederer | 4



The Traveling Salesman Problem

Example in the Euclidean Plane

This is a reasonable tour.

July 4, 2012 | Thorsten Ederer | 4



The Traveling Salesman Problem

Example in the Euclidean Plane

This is the optimal tour.

July 4, 2012 | Thorsten Ederer | 4



The Traveling Salesman Problem

Formal Definition

Traveling Salesman Function Problem
Given a complete undirected weighted graph G = (V , E , c),
find a Hamiltonian circuit of minimum total weight.

Traveling Salesman Decision Problem
Given an complete undirected weighted graph G = (V , E , c)
and a number x , decide whether there is a Hamiltonian
circuit with total weight of at most x .

July 4, 2012 | Thorsten Ederer | 5



The Traveling Salesman Problem

Other Variants

I If the input graph is not required to be complete, there might be
no Hamilton cycle at all. If the problem is assumed to be feasible,
we can compensate for missing edges by sufficiently long ones.

I If the input graph is not required to be undirected, the distance
between two cities might depend on the travel direction. This
problem is called the asymmetric TSP.

I If we search for a Hamiltonian circuit with the minimal weight of
the weightiest edge, the problem is called the bottleneck TSP.

I Usually, the weights are assumed to be non-negative. If they also
satisfy the triangle inequality, the problem is called the metric TSP.
In particular, if vertices are identified with Cartesian coordinates
in the Euclidean space, the problem is called the Euclidean TSP.

July 4, 2012 | Thorsten Ederer | 6



The Traveling Salesman Problem

Other Variants

I If the input graph is not required to be complete, there might be
no Hamilton cycle at all. If the problem is assumed to be feasible,
we can compensate for missing edges by sufficiently long ones.

I If the input graph is not required to be undirected, the distance
between two cities might depend on the travel direction. This
problem is called the asymmetric TSP.

I If we search for a Hamiltonian circuit with the minimal weight of
the weightiest edge, the problem is called the bottleneck TSP.

I Usually, the weights are assumed to be non-negative. If they also
satisfy the triangle inequality, the problem is called the metric TSP.
In particular, if vertices are identified with Cartesian coordinates
in the Euclidean space, the problem is called the Euclidean TSP.

July 4, 2012 | Thorsten Ederer | 6



The Traveling Salesman Problem

Other Variants

I If the input graph is not required to be complete, there might be
no Hamilton cycle at all. If the problem is assumed to be feasible,
we can compensate for missing edges by sufficiently long ones.

I If the input graph is not required to be undirected, the distance
between two cities might depend on the travel direction. This
problem is called the asymmetric TSP.

I If we search for a Hamiltonian circuit with the minimal weight of
the weightiest edge, the problem is called the bottleneck TSP.

I Usually, the weights are assumed to be non-negative. If they also
satisfy the triangle inequality, the problem is called the metric TSP.
In particular, if vertices are identified with Cartesian coordinates
in the Euclidean space, the problem is called the Euclidean TSP.

July 4, 2012 | Thorsten Ederer | 6



The Traveling Salesman Problem

Other Variants

I If the input graph is not required to be complete, there might be
no Hamilton cycle at all. If the problem is assumed to be feasible,
we can compensate for missing edges by sufficiently long ones.

I If the input graph is not required to be undirected, the distance
between two cities might depend on the travel direction. This
problem is called the asymmetric TSP.

I If we search for a Hamiltonian circuit with the minimal weight of
the weightiest edge, the problem is called the bottleneck TSP.

I Usually, the weights are assumed to be non-negative. If they also
satisfy the triangle inequality, the problem is called the metric TSP.
In particular, if vertices are identified with Cartesian coordinates
in the Euclidean space, the problem is called the Euclidean TSP.

July 4, 2012 | Thorsten Ederer | 6



The Traveling Salesman Problem

Example in the Euclidean Plane

1.4 1.8 3.6

1.4

2.7

2.9
3.2

1.0

2.2

3.2

July 4, 2012 | Thorsten Ederer | 7



The Traveling Salesman Problem

Complexity

The Function Problem is

NP-hard

The Decision Problem is

NP-complete

July 4, 2012 | Thorsten Ederer | 8



Recapitulation

Turing Machine

What is a Turing Machine?

July 4, 2012 | Thorsten Ederer | 9



Recapitulation

Turing Machine

July 4, 2012 | Thorsten Ederer | 10


lego.mp4
Media File (video/mp4)



Recapitulation

Algorithm Complexity

Worst-case Runtime
Let A be a (deterministic) algorithm. Its time complexity TA(n)
is the maximum amount of time taken on any input of size n.

July 4, 2012 | Thorsten Ederer | 11



Recapitulation

Algorithm Complexity

Worst-case Runtime
Let A be a (deterministic) algorithm. Its time complexity TA(n)
is the maximum amount of time taken on any input of size n.

An algorithm A is called a
I constant time algorithm, if: TA(n) ∈ O(1)
I linear time algorithm, if: TA(n) ∈ O(n)
I polynomial time algorithm, if: ∃k : TA(n) ∈ O(nk )

I exponential time algorithm, if: ∃k : TA(n) ∈ O(2nk
)

July 4, 2012 | Thorsten Ederer | 11



Recapitulation

Algorithm Complexity

Worst-case Runtime
Let A be a (deterministic) algorithm. Its time complexity TA(n)
is the maximum amount of time taken on any input of size n.

An algorithm A is called a
I constant time algorithm, if: TA(n) ∈ O(1)
I linear time algorithm, if: TA(n) ∈ O(n)
I polynomial time algorithm, if: ∃k : TA(n) ∈ O(nk )

I exponential time algorithm, if: ∃k : TA(n) ∈ O(2nk
)

The same definitions hold for the space complexity SA(n).

July 4, 2012 | Thorsten Ederer | 11



Recapitulation

Problem Complexity

Complexity Classes
I P (PTIME) is the class of all decision problems

which can be solved in polynomial time.
I NP is the class of all decision problems whose

solutions can be verified in polynomial time.
I PSPACE is the class of all decision problems

which can be solved in polynomial space.
I EXPTIME is the class of all decision problems

which can be solved in exponential time.

Assumed Inclusion

July 4, 2012 | Thorsten Ederer | 12



Recapitulation

Problem Complexity

Complexity Classes
I P (PTIME) is the class of all decision problems

which can be solved in polynomial time.
I NP is the class of all decision problems whose

solutions can be verified in polynomial time.
I PSPACE is the class of all decision problems

which can be solved in polynomial space.
I EXPTIME is the class of all decision problems

which can be solved in exponential time.

Assumed Inclusion

Hardness and Completeness
A problem p is called CLASS-hard, if there is a polynomial
time reduction from all problems in CLASS to p. A problem
is called CLASS-complete, if it is CLASS-hard and in CLASS.

July 4, 2012 | Thorsten Ederer | 12



The Traveling Salesman Problem

Complexity

The Function Problem is

NP-hard

The Decision Problem is

NP-complete

. . . even with Euclidean distances!

July 4, 2012 | Thorsten Ederer | 13



The Traveling Salesman Problem

Constructive Heuristics

Find good solutions in polynomial time!

July 4, 2012 | Thorsten Ederer | 14



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

July 4, 2012 | Thorsten Ederer | 15



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

I The NN algorithm is easy to implement and runs in O(V 2).

I For randomly distributed cities in the plane, the NN
algorithm on average finds a tour which is approximately
25 % longer than the optimal tour.

I The NN algorithm may not find any feasible tour at all.
I It is easy to construct distances for any given number of

cities where the NN algorithm finds the unique worst of all
possible tours.

July 4, 2012 | Thorsten Ederer | 16



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

I The NN algorithm is easy to implement and runs in O(V 2).
I For randomly distributed cities in the plane, the NN

algorithm on average finds a tour which is approximately
25 % longer than the optimal tour.

I The NN algorithm may not find any feasible tour at all.
I It is easy to construct distances for any given number of

cities where the NN algorithm finds the unique worst of all
possible tours.

July 4, 2012 | Thorsten Ederer | 16



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

I The NN algorithm is easy to implement and runs in O(V 2).
I For randomly distributed cities in the plane, the NN

algorithm on average finds a tour which is approximately
25 % longer than the optimal tour.

I The NN algorithm may not find any feasible tour at all.

I It is easy to construct distances for any given number of
cities where the NN algorithm finds the unique worst of all
possible tours.

July 4, 2012 | Thorsten Ederer | 16



The Traveling Salesman Problem

Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

I The NN algorithm is easy to implement and runs in O(V 2).
I For randomly distributed cities in the plane, the NN

algorithm on average finds a tour which is approximately
25 % longer than the optimal tour.

I The NN algorithm may not find any feasible tour at all.
I It is easy to construct distances for any given number of

cities where the NN algorithm finds the unique worst of all
possible tours.

July 4, 2012 | Thorsten Ederer | 16



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

July 4, 2012 | Thorsten Ederer | 17



The Traveling Salesman Problem

Constructive Heuristics

Double Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

I The DMST algorithm runs in O(V 2 log V ).

I In any graph, the weight of a MST is less than the weight of the
optimal tour. Therefore, if the triangle inequality holds, the
constructed tour is less than twice as long as the optimal tour.
(approximation ratio 2)

I A variant of the DMST algorithm, the Christofides algorithm,
achieves an approximation ratio of 1.5 in O(V 3).

July 4, 2012 | Thorsten Ederer | 18



The Traveling Salesman Problem

Constructive Heuristics

Double Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

I The DMST algorithm runs in O(V 2 log V ).
I In any graph, the weight of a MST is less than the weight of the

optimal tour. Therefore, if the triangle inequality holds, the
constructed tour is less than twice as long as the optimal tour.
(approximation ratio 2)

I A variant of the DMST algorithm, the Christofides algorithm,
achieves an approximation ratio of 1.5 in O(V 3).

July 4, 2012 | Thorsten Ederer | 18



The Traveling Salesman Problem

Constructive Heuristics

Double Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim’s algorithm.
Step 2: Traverse the MST by DFS, but skip already visited cities.

I The DMST algorithm runs in O(V 2 log V ).
I In any graph, the weight of a MST is less than the weight of the

optimal tour. Therefore, if the triangle inequality holds, the
constructed tour is less than twice as long as the optimal tour.
(approximation ratio 2)

I A variant of the DMST algorithm, the Christofides algorithm,
achieves an approximation ratio of 1.5 in O(V 3).

July 4, 2012 | Thorsten Ederer | 18



The Traveling Salesman Problem

Improvement Heuristics

Construct better solutions from existing ones!

July 4, 2012 | Thorsten Ederer | 19



The Traveling Salesman Problem

Improvement Heuristics

Pairwise Exchange (2-opt) algorithm
Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).

July 4, 2012 | Thorsten Ederer | 20



The Traveling Salesman Problem

Improvement Heuristics

Pairwise Exchange (2-opt) algorithm
Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).

July 4, 2012 | Thorsten Ederer | 20



The Traveling Salesman Problem

Improvement Heuristics

Pairwise Exchange (2-opt) algorithm
Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).

July 4, 2012 | Thorsten Ederer | 20



The Traveling Salesman Problem

Improvement Heuristics

Pairwise Exchange (2-opt) algorithm
Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).

July 4, 2012 | Thorsten Ederer | 20



The Traveling Salesman Problem

Improvement Heuristics

Lin-Kernighan (variable-opt) algorithm
Step 1: Choose a suitable k for the k-opt algorithm.
Step 2: Remove k edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

I The LK algorithm (a single iteration) runs in approximately O(V 2.2).
I Even in Euclidean TSPs, 2-opt can take an exponential number of steps.

In probabilistic instances, the expected number of steps is polynomial.
I There is no guaranteed improvement in tour length. In probabilistic

instances, 2-opt approximately achieves a 5% gap, 3-opt a 3% gap.
I Lin-Kernighan-Johnson can solve many instances to optimality.

July 4, 2012 | Thorsten Ederer | 21



The Traveling Salesman Problem

Improvement Heuristics

Lin-Kernighan (variable-opt) algorithm
Step 1: Choose a suitable k for the k-opt algorithm.
Step 2: Remove k edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

I The LK algorithm (a single iteration) runs in approximately O(V 2.2).

I Even in Euclidean TSPs, 2-opt can take an exponential number of steps.
In probabilistic instances, the expected number of steps is polynomial.

I There is no guaranteed improvement in tour length. In probabilistic
instances, 2-opt approximately achieves a 5% gap, 3-opt a 3% gap.

I Lin-Kernighan-Johnson can solve many instances to optimality.

July 4, 2012 | Thorsten Ederer | 21



The Traveling Salesman Problem

Improvement Heuristics

Lin-Kernighan (variable-opt) algorithm
Step 1: Choose a suitable k for the k-opt algorithm.
Step 2: Remove k edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

I The LK algorithm (a single iteration) runs in approximately O(V 2.2).
I Even in Euclidean TSPs, 2-opt can take an exponential number of steps.

In probabilistic instances, the expected number of steps is polynomial.

I There is no guaranteed improvement in tour length. In probabilistic
instances, 2-opt approximately achieves a 5% gap, 3-opt a 3% gap.

I Lin-Kernighan-Johnson can solve many instances to optimality.

July 4, 2012 | Thorsten Ederer | 21



The Traveling Salesman Problem

Improvement Heuristics

Lin-Kernighan (variable-opt) algorithm
Step 1: Choose a suitable k for the k-opt algorithm.
Step 2: Remove k edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

I The LK algorithm (a single iteration) runs in approximately O(V 2.2).
I Even in Euclidean TSPs, 2-opt can take an exponential number of steps.

In probabilistic instances, the expected number of steps is polynomial.
I There is no guaranteed improvement in tour length. In probabilistic

instances, 2-opt approximately achieves a 5% gap, 3-opt a 3% gap.

I Lin-Kernighan-Johnson can solve many instances to optimality.

July 4, 2012 | Thorsten Ederer | 21



The Traveling Salesman Problem

Improvement Heuristics

Lin-Kernighan (variable-opt) algorithm
Step 1: Choose a suitable k for the k-opt algorithm.
Step 2: Remove k edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

I The LK algorithm (a single iteration) runs in approximately O(V 2.2).
I Even in Euclidean TSPs, 2-opt can take an exponential number of steps.

In probabilistic instances, the expected number of steps is polynomial.
I There is no guaranteed improvement in tour length. In probabilistic

instances, 2-opt approximately achieves a 5% gap, 3-opt a 3% gap.
I Lin-Kernighan-Johnson can solve many instances to optimality.

July 4, 2012 | Thorsten Ederer | 21



The Traveling Salesman Problem

Randomized Heuristics

Ant Colony Optimization algorithm
Send out a large number of virtual ants to explore many possible tours.
As a simple method of communication, these ants rate edges by means
of virtual pheromones. Each individual ant chooses its next destination
randomized, based on a heuristic weighting of several simple factors:

I Near (visible) cities have a higher chance of being chosen.
I Edges with much pheromone have a higher chance of being chosen.
I Ants which completed a tour deposit pheromone on all edges traversed.

The shorter the tour, the more pheromone is deposited.
I Over time, pheromone trails evaporate.

July 4, 2012 | Thorsten Ederer | 22



The Traveling Salesman Problem

Randomized Heuristics

Ant Colony Optimization algorithm
Send out a large number of virtual ants to explore many possible tours.
As a simple method of communication, these ants rate edges by means
of virtual pheromones. Each individual ant chooses its next destination
randomized, based on a heuristic weighting of several simple factors:

I Near (visible) cities have a higher chance of being chosen.
I Edges with much pheromone have a higher chance of being chosen.
I Ants which completed a tour deposit pheromone on all edges traversed.

The shorter the tour, the more pheromone is deposited.
I Over time, pheromone trails evaporate.

July 4, 2012 | Thorsten Ederer | 22



The Traveling Salesman Problem

Exact Algorithms

Find a guaranteed optimal solution!

July 4, 2012 | Thorsten Ederer | 23



The Traveling Salesman Problem

Exact Algorithms

Brute Force algorithm
Try all permutations of cities and remember which one is cheapest.

I The BF algorithm runs in O(V !). Examples:

# cities # tours est. time

5 12 12µs
10 181 000 0.2s
15 87× 109 12h
20 60× 1015 2000y

n (n − 1)!/2 . . .
I Impractical for real-world instances.

July 4, 2012 | Thorsten Ederer | 24



The Traveling Salesman Problem

Exact Algorithms

Brute Force algorithm
Try all permutations of cities and remember which one is cheapest.

I The BF algorithm runs in O(V !). Examples:

# cities # tours est. time

5 12 12µs
10 181 000 0.2s
15 87× 109 12h
20 60× 1015 2000y

n (n − 1)!/2 . . .
I Impractical for real-world instances.

July 4, 2012 | Thorsten Ederer | 24



The Traveling Salesman Problem

Exact Algorithms

Dynamic Programming algorithm
Solve the shortest subtour problem on subsequent larger subgraphs:
If we are at city i and still have to visit all cities in S, then we have

c∗(i , S) = min
j∈S
{c(i , j) + c∗(j , S\{j})}

I The DP algorithm runs in O(n2 · 2n), but requires exponential space.
I It can be modified to only need polynomial space, at the expense of

time complexity (e.g. O(poly (n) · 2n) or O(4n) ).
I It is an open problem if an algorithm with a base less than 2, e.g.

with runtime in O(poly (n) · 1.999n), exists.

July 4, 2012 | Thorsten Ederer | 25



The Traveling Salesman Problem

Exact Algorithms

Dynamic Programming algorithm
Solve the shortest subtour problem on subsequent larger subgraphs:
If we are at city i and still have to visit all cities in S, then we have

c∗(i , S) = min
j∈S
{c(i , j) + c∗(j , S\{j})}

I The DP algorithm runs in O(n2 · 2n), but requires exponential space.

I It can be modified to only need polynomial space, at the expense of
time complexity (e.g. O(poly (n) · 2n) or O(4n) ).

I It is an open problem if an algorithm with a base less than 2, e.g.
with runtime in O(poly (n) · 1.999n), exists.

July 4, 2012 | Thorsten Ederer | 25



The Traveling Salesman Problem

Exact Algorithms

Dynamic Programming algorithm
Solve the shortest subtour problem on subsequent larger subgraphs:
If we are at city i and still have to visit all cities in S, then we have

c∗(i , S) = min
j∈S
{c(i , j) + c∗(j , S\{j})}

I The DP algorithm runs in O(n2 · 2n), but requires exponential space.
I It can be modified to only need polynomial space, at the expense of

time complexity (e.g. O(poly (n) · 2n) or O(4n) ).

I It is an open problem if an algorithm with a base less than 2, e.g.
with runtime in O(poly (n) · 1.999n), exists.

July 4, 2012 | Thorsten Ederer | 25



The Traveling Salesman Problem

Exact Algorithms

Dynamic Programming algorithm
Solve the shortest subtour problem on subsequent larger subgraphs:
If we are at city i and still have to visit all cities in S, then we have

c∗(i , S) = min
j∈S
{c(i , j) + c∗(j , S\{j})}

I The DP algorithm runs in O(n2 · 2n), but requires exponential space.
I It can be modified to only need polynomial space, at the expense of

time complexity (e.g. O(poly (n) · 2n) or O(4n) ).
I It is an open problem if an algorithm with a base less than 2, e.g.

with runtime in O(poly (n) · 1.999n), exists.

July 4, 2012 | Thorsten Ederer | 25



The Traveling Salesman Problem

Summary

http://xkcd.com/399/

July 4, 2012 | Thorsten Ederer | 26

http://xkcd.com/399/


Outlook: Linear Programming

Introduction

What comes after ADM?

July 4, 2012 | Thorsten Ederer | 27



Outlook: Linear Programming

Introduction

We have seen many algorithms to various problems.

July 4, 2012 | Thorsten Ederer | 28



Outlook: Linear Programming

Introduction

We have seen many algorithms to various problems.

Is there one algorithm to rule them all?

July 4, 2012 | Thorsten Ederer | 28



Outlook: Linear Programming

Introduction

Of course

All problems in P can be reduced to all P-hard problems.
All problems in NP can be reduced to all NP-hard problems.

July 4, 2012 | Thorsten Ederer | 29



Outlook: Linear Programming

Introduction

The right question is:
Which problem makes for easy reductions?

Linear constraints are intuitive for humans.

July 4, 2012 | Thorsten Ederer | 30



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

0 x1

x2

1.5 · x1 − x2 ≤ 0.5

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Definition

Linear Program (LP)
Optimize a linear objective function over a convex polyhedron:

min {cT x | Ax ≤ b}

0 x1

x2

cT x∗ = 3.8

x∗ = (4, 1.5)

July 4, 2012 | Thorsten Ederer | 31



Outlook: Linear Programming

Examples

Pottery
A potter is making cups and plates. It takes her 6 minutes to make a
cup and 3 minutes to make a plate. Each cup uses 3/4 lb. of clay and
each plate uses one lb. of clay. She has 20 hours available for making
the cups and plates and has 250 lbs. of clay on hand. She makes a
profit of $2 on each cup and $1.50 on each plate. How many cups and
how many plates should she make in order to maximize her profit?

July 4, 2012 | Thorsten Ederer | 32



Outlook: Linear Programming

Examples

Pottery
A potter is making cups and plates. It takes her 6 minutes to make a
cup and 3 minutes to make a plate. Each cup uses 3/4 lb. of clay and
each plate uses one lb. of clay. She has 20 hours available for making
the cups and plates and has 250 lbs. of clay on hand. She makes a
profit of $2 on each cup and $1.50 on each plate. How many cups and
how many plates should she make in order to maximize her profit?

maximize
2x + 1.5y

subject to

6x + 3y ≤ 20 · 60 x ≥ 0

0.75x + y ≤ 250 y ≥ 0

July 4, 2012 | Thorsten Ederer | 32



Outlook: Linear Programming

Examples

Max Flow
Given a directed weighted graph G = (V , E , c) with c > 0 and two
distinguished nodes s and t , maximize the network flow from s to t .

July 4, 2012 | Thorsten Ederer | 33



Outlook: Linear Programming

Examples

Max Flow
Given a directed weighted graph G = (V , E , c) with c > 0 and two
distinguished nodes s and t , maximize the network flow from s to t .

maximize ∑
(s,f )∈E

x(s,f )

subject to

∀v ∈ V\{s, t} :
∑

(i ,v )∈E

x(i ,v ) =
∑

(v ,o)∈E

x(v ,o)

∀e ∈ E : 0 ≤ xe ≤ ce

July 4, 2012 | Thorsten Ederer | 33



Outlook: Linear Programming

Examples

Shortest Path
Given a directed weighted graph G = (V , E , c) without a negative-weight
cycle and two distinguished nodes s and t , find the shortest path from s to t .

July 4, 2012 | Thorsten Ederer | 34



Outlook: Linear Programming

Examples

Shortest Path
Given a directed weighted graph G = (V , E , c) without a negative-weight
cycle and two distinguished nodes s and t , find the shortest path from s to t .

maximize
xt

subject to
xs = 0

∀(u, v ) ∈ E : xv ≤ xu + c(u,v )

July 4, 2012 | Thorsten Ederer | 34



Outlook: Linear Programming

Discussion

What does the term Programming mean?

July 4, 2012 | Thorsten Ederer | 35



Outlook: Linear Programming

Discussion

What does the term Programming mean?

Traditional Programming
I How can the solution be found?
I “Calculate a space curve for the 3D printer’s laser to follow.”

July 4, 2012 | Thorsten Ederer | 35



Outlook: Linear Programming

Discussion

What does the term Programming mean?

Traditional Programming
I How can the solution be found?
I “Calculate a space curve for the 3D printer’s laser to follow.”

Linear Programming
I What does a solution look like?
I “Load a CAD model of the desired object onto the 3D printer.”

July 4, 2012 | Thorsten Ederer | 35



Outlook: Linear Programming

Algorithms

Simplex Method
If a feasible solution exists and if the objective function is bounded, the
optimal objective value is attained at a vertex. Start at any vertex, then
successively follow any edge to a better vertex until there is none.

Interior Point Method
Start at any feasible point in the polyhedron, then derive any other
point which is still in the polyhedron and has a better objective value.
Do this fast enough and find a suitable termination criterion.

July 4, 2012 | Thorsten Ederer | 36



Outlook: Linear Programming

Generalization

The LP Decision Problem is (weakly) P-complete.

Is there a similar modeling language for NP?

July 4, 2012 | Thorsten Ederer | 37



Outlook: Linear Programming

Generalization

Integer Linear Program (ILP)
Optimize a linear objective function over
the integer points in a convex polyhedron:

min {cT x | Ax ≤ b, x ∈ Zn}

July 4, 2012 | Thorsten Ederer | 38



Outlook: Linear Programming

Generalization

Integer Linear Program (ILP)
Optimize a linear objective function over
the integer points in a convex polyhedron:

min {cT x | Ax ≤ b, x ∈ Zn}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 38



Outlook: Linear Programming

Generalization

Integer Linear Program (ILP)
Optimize a linear objective function over
the integer points in a convex polyhedron:

min {cT x | Ax ≤ b, x ∈ Zn}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 38



Outlook: Linear Programming

Generalization

Integer Linear Program (ILP)
Optimize a linear objective function over
the integer points in a convex polyhedron:

min {cT x | Ax ≤ b, x ∈ Zn}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 38



Outlook: Linear Programming

Generalization

Integer Linear Program (ILP)
Optimize a linear objective function over
the integer points in a convex polyhedron:

min {cT x | Ax ≤ b, x ∈ Zn}

0 x1

x2

July 4, 2012 | Thorsten Ederer | 38



Outlook: Linear Programming

Examples

Knapsack Problem
Given a set of items I, each with a size S and a value V .
Maximize the total value of a knapsack with size K .

July 4, 2012 | Thorsten Ederer | 39



Outlook: Linear Programming

Examples

Knapsack Problem
Given a set of items I, each with a size S and a value V .
Maximize the total value of a knapsack with size K .

maximize ∑
i∈I

Vixi

subject to ∑
i∈I

Sixi ≤ K

∀i ∈ I : xi ∈ {0, 1}

July 4, 2012 | Thorsten Ederer | 39



Outlook: Linear Programming

Examples

Traveling Salesman Problem
Given a complete undirected weighted graph G = (V , E , c), find
a Hamiltonian circuit of minimum total weight.

July 4, 2012 | Thorsten Ederer | 40



Outlook: Linear Programming

Examples

Traveling Salesman Problem
Given a complete undirected weighted graph G = (V , E , c), find
a Hamiltonian circuit of minimum total weight.

minimize ∑
(i ,j)∈E

c(i ,j)x(i ,j)

subject to

∀j ∈ V :
∑
i∈V

x(i ,j) = 1 ∀i ∈ V :
∑
j∈V

x(i ,j) = 1

∀S ( V , |S| > 1 :
∑

i∈S,j∈S,i 6=j

x(i ,j) ≤ |S| − 1

July 4, 2012 | Thorsten Ederer | 40



Outlook: Linear Programming

Generalization

Mixed-Integer Linear Program (MILP)
Optimize a linear objective function over
integer hyperspaces in a convex polyhedron:

min {cT x | Ax ≤ b, x ∈ Zp × Rn−p}

The best of both worlds, and more:
I semi-continuous variables, discontinuous domains, . . .
I logic constraints: if-then, either-or, if-and-only-if, . . .
I piecewise linearization, variable-product elimination, . . .

July 4, 2012 | Thorsten Ederer | 41



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

cT x∗ = 3.8

x∗ = (4, 1.5)

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Algorithms

Branch and Bound method
Solve the LP-Relaxation, i.e., assume all variables to be
continuous. If the solution does not satisfy the integer
constraints, branch and repeat with the subproblems.

0 x1

x2

July 4, 2012 | Thorsten Ederer | 42



Outlook: Linear Programming

Generalization

The ILP/MILP Decision Problem is NP-complete.

Is there a similar modeling language for PSPACE?

July 4, 2012 | Thorsten Ederer | 43



Outlook: Linear Programming

Generalization

Quantified Mixed-Integer Linear Program (QMILP)
Optimize a linear objective function over integer hyperspaces
in a convex polyhedron with quantified variables:

min {cT x | Q(x) : Ax ≤ b, x ∈ Zp × Rn−p}

Quantifiers are known from logic, e.g.:

Q(x) = ∃ x1 ∀ x2 ∃ x3, x4 x5 ∃ x6 ...

∃ = exists ∀ = for all = for random

July 4, 2012 | Thorsten Ederer | 44



Outlook: Linear Programming

Generalization

What consequences does the quantification have?

I The meaning of the objective function changes:

min cT x =̃ min
x1

max
x2

min
x3,x4

E
x5

min
x6

cT x

I The problem shows tendencies of a two-person game:
I The existential player wants to stay in the polyhedron

and minimize the objective function.
I The universal player wants to leave the polyhedron

and maximize the objective function.

July 4, 2012 | Thorsten Ederer | 45



Outlook: Linear Programming

Generalization

What consequences does the quantification have?

I The meaning of the objective function changes:

min cT x =̃ min
x1

max
x2

min
x3,x4

E
x5

min
x6

cT x

I The problem shows tendencies of a two-person game:
I The existential player wants to stay in the polyhedron

and minimize the objective function.
I The universal player wants to leave the polyhedron

and maximize the objective function.

July 4, 2012 | Thorsten Ederer | 45



Outlook: Linear Programming

Generalization

What consequences does the quantification have?

I The meaning of the objective function changes:

min cT x =̃ min
x1

max
x2

min
x3,x4

E
x5

min
x6

cT x

I The problem shows tendencies of a two-person game:
I The existential player wants to stay in the polyhedron

and minimize the objective function.
I The universal player wants to leave the polyhedron

and maximize the objective function.

July 4, 2012 | Thorsten Ederer | 45



Outlook: Linear Programming

Examples

Single-player Games (Patience games)
Kondike, Freecell, . . .

July 4, 2012 | Thorsten Ederer | 46



Outlook: Linear Programming

Examples

Single-player Games (Patience games)
Kondike, Freecell, . . .

Two-player Games (Stategy games)
Tic-Tac-Toe, Chess, Checkers, Go, Gomoku, Reversi, . . .

July 4, 2012 | Thorsten Ederer | 46



Outlook: Linear Programming

Examples

Single-player Games (Patience games)
Kondike, Freecell, . . .

Two-player Games (Stategy games)
Tic-Tac-Toe, Chess, Checkers, Go, Gomoku, Reversi, . . .

Two-player Games with Chance
Ludo, Backgammon, . . .

July 4, 2012 | Thorsten Ederer | 46



Outlook: Linear Programming

Examples

Production Planning under Uncertainty
I What is the most profitable production strategy

for a given customer demand?

I What is the best investment decision,
if the customer demand is uncertain?

July 4, 2012 | Thorsten Ederer | 47



Outlook: Linear Programming

Examples

Production Planning under Uncertainty
I What is the most profitable production strategy

for a given customer demand?
I What is the best investment decision,

if the customer demand is uncertain?

July 4, 2012 | Thorsten Ederer | 47



Outlook: Linear Programming

Examples

Production Planning under Uncertainty
I What is the most profitable production strategy

for a given customer demand?
I What is the best investment decision,

if the customer demand is uncertain?

Booster Stations under Uncertainty
I What is the most efficient pump operation

for a given load collective?

I What is the best initial topology,
if the load collective is uncertain?

July 4, 2012 | Thorsten Ederer | 47



Outlook: Linear Programming

Examples

Production Planning under Uncertainty
I What is the most profitable production strategy

for a given customer demand?
I What is the best investment decision,

if the customer demand is uncertain?

Booster Stations under Uncertainty
I What is the most efficient pump operation

for a given load collective?
I What is the best initial topology,

if the load collective is uncertain?

July 4, 2012 | Thorsten Ederer | 47



Outlook: Linear Programming

Software

Want to try it out yourself?

http://gusek.sourceforge.net/

July 4, 2012 | Thorsten Ederer | 48

http://gusek.sourceforge.net/

