## Algorithmic Discrete Mathematics

## Lecture Notes / July 3, 2012

## The Traveling Salesman Problem Outlook: Linear Programming

## Preliminaries <br> Obligatory Question

## Versteht hier jemand kein Deutsch?

## The Traveling Salesman Problem Informal Definition

## Traveling Salesman

Given a set of cities, and known distances between each pair of cities, find a tour that visits each city exactly once and that minimizes the total distance travelled.

## The Traveling Salesman Problem Example in the Euclidean Plane

$\qquad$

$\bigcirc$


O
O


0


Given 10 cities and no obstacles ...

## The Traveling Salesman Problem Example in the Euclidean Plane



This is a reasonable tour.

## The Traveling Salesman Problem Example in the Euclidean Plane



This is the optimal tour.

## The Traveling Salesman Problem Formal Definition

## Traveling Salesman Function Problem

Given a complete undirected weighted graph $G=(V, E, c)$, find a Hamiltonian circuit of minimum total weight.

## Traveling Salesman Decision Problem

Given an complete undirected weighted graph $G=(V, E, c)$ and a number $x$, decide whether there is a Hamiltonian circuit with total weight of at most $x$.

## The Traveling Salesman Problem Other Variants

- If the input graph is not required to be complete, there might be no Hamilton cycle at all. If the problem is assumed to be feasible, we can compensate for missing edges by sufficiently long ones.


## The Traveling Salesman Problem Other Variants

- If the input graph is not required to be complete, there might be no Hamilton cycle at all. If the problem is assumed to be feasible, we can compensate for missing edges by sufficiently long ones.
- If the input graph is not required to be undirected, the distance between two cities might depend on the travel direction. This problem is called the asymmetric TSP.


## The Traveling Salesman Problem Other Variants

- If the input graph is not required to be complete, there might be no Hamilton cycle at all. If the problem is assumed to be feasible, we can compensate for missing edges by sufficiently long ones.
- If the input graph is not required to be undirected, the distance between two cities might depend on the travel direction. This problem is called the asymmetric TSP.
- If we search for a Hamiltonian circuit with the minimal weight of the weightiest edge, the problem is called the bottleneck TSP.


## The Traveling Salesman Problem Other Variants

- If the input graph is not required to be complete, there might be no Hamilton cycle at all. If the problem is assumed to be feasible, we can compensate for missing edges by sufficiently long ones.
- If the input graph is not required to be undirected, the distance between two cities might depend on the travel direction. This problem is called the asymmetric TSP.
- If we search for a Hamiltonian circuit with the minimal weight of the weightiest edge, the problem is called the bottleneck TSP.
- Usually, the weights are assumed to be non-negative. If they also satisfy the triangle inequality, the problem is called the metric TSP. In particular, if vertices are identified with Cartesian coordinates in the Euclidean space, the problem is called the Euclidean TSP.


## The Traveling Salesman Problem

## Example in the Euclidean Plane



## The Traveling Salesman Problem <br> Complexity

# The Function Problem is <br> NP-hard 

## The Decision Problem is <br> NP-complete

## Recapitulation

Turing Machine

## What is a Turing Machine?

## Recapitulation <br> Turing Machine



## Recapitulation <br> Algorithm Complexity

## Worst-case Runtime

Let $A$ be a (deterministic) algorithm. Its time complexity $T_{A}(n)$ is the maximum amount of time taken on any input of size $n$.

## Recapitulation

## Algorithm Complexity

## Worst-case Runtime

Let $A$ be a (deterministic) algorithm. Its time complexity $T_{A}(n)$ is the maximum amount of time taken on any input of size $n$.

An algorithm $A$ is called a

- constant time algorithm, if:

$$
\begin{array}{r}
T_{A}(n) \in O(1) \\
T_{A}(n) \in O(n) \\
\exists k: T_{A}(n) \in O\left(n^{k}\right) \\
\exists k: T_{A}(n) \in O\left(2^{n^{k}}\right)
\end{array}
$$

- linear time algorithm, if:
- polynomial time algorithm, if:
- exponential time algorithm, if:


## Recapitulation

## Algorithm Complexity

## Worst-case Runtime

Let $A$ be a (deterministic) algorithm. Its time complexity $T_{A}(n)$ is the maximum amount of time taken on any input of size $n$.

An algorithm $A$ is called a

- constant time algorithm, if:

$$
\begin{array}{r}
T_{A}(n) \in O(1) \\
T_{A}(n) \in O(n) \\
\exists k: T_{A}(n) \in O\left(n^{k}\right) \\
\exists k: T_{A}(n) \in O\left(2^{n^{k}}\right)
\end{array}
$$

- linear time algorithm, if:
- polynomial time algorithm, if:
- exponential time algorithm, if:

The same definitions hold for the space complexity $S_{A}(n)$.

## Recapitulation

## Problem Complexity

## Complexity Classes

- $P$ (PTIME) is the class of all decision problems which can be solved in polynomial time.


## Assumed Inclusion

- NP is the class of all decision problems whose solutions can be verified in polynomial time.
- PSPACE is the class of all decision problems which can be solved in polynomial space.
- EXPTIME is the class of all decision problems which can be solved in exponential time.



## Recapitulation

## Problem Complexity

## Complexity Classes

- $P$ (PTIME) is the class of all decision problems which can be solved in polynomial time.


## Assumed Inclusion

- NP is the class of all decision problems whose solutions can be verified in polynomial time.
- PSPACE is the class of all decision problems which can be solved in polynomial space.
- EXPTIME is the class of all decision problems which can be solved in exponential time.



## Hardness and Completeness

A problem $p$ is called CLASS-hard, if there is a polynomial time reduction from all problems in CLASS to $p$. A problem is called CLASS-complete, if it is CLASS-hard and in CLASS.

## The Traveling Salesman Problem <br> Complexity

The Function Problem is

## NP-hard

The Decision Problem is

## NP-complete

...even with Euclidean distances!

## The Traveling Salesman Problem Constructive Heuristics

Find good solutions in polynomial time!

## The Traveling Salesman Problem Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


0
0


## The Traveling Salesman Problem Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


0
0
0


## The Traveling Salesman Problem Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


0
0


0


## The Traveling Salesman Problem Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.



0


## The Traveling Salesman Problem Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


## The Traveling Salesman Problem Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


0


## The Traveling Salesman Problem <br> Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


## The Traveling Salesman Problem <br> Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


## The Traveling Salesman Problem <br> Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


## The Traveling Salesman Problem <br> Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


## The Traveling Salesman Problem <br> Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.


## The Traveling Salesman Problem <br> Constructive Heuristics

Nearest Neighbour algorithm
Successively visit the nearest unvisited city.

- The NN algorithm is easy to implement and runs in $O\left(V^{2}\right)$.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Nearest Neighbour algorithm

Successively visit the nearest unvisited city.

- The NN algorithm is easy to implement and runs in $O\left(V^{2}\right)$.
- For randomly distributed cities in the plane, the NN algorithm on average finds a tour which is approximately $25 \%$ longer than the optimal tour.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Nearest Neighbour algorithm

Successively visit the nearest unvisited city.

- The NN algorithm is easy to implement and runs in $O\left(V^{2}\right)$.
- For randomly distributed cities in the plane, the NN algorithm on average finds a tour which is approximately 25 \% longer than the optimal tour.
- The NN algorithm may not find any feasible tour at all.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Nearest Neighbour algorithm

Successively visit the nearest unvisited city.

- The NN algorithm is easy to implement and runs in $O\left(V^{2}\right)$.
- For randomly distributed cities in the plane, the NN algorithm on average finds a tour which is approximately $25 \%$ longer than the optimal tour.
- The NN algorithm may not find any feasible tour at all.
- It is easy to construct distances for any given number of cities where the NN algorithm finds the unique worst of all possible tours.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.

$\bigcirc$


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.

$\bigcirc$

$\bigcirc$


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.

$\bigcirc$


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.

$\bigcirc$


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.


## The Traveling Salesman Problem <br> Constructive Heuristics

Minimum Spanning Tree algorithm
Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Double Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.

- The DMST algorithm runs in $O\left(V^{2} \log V\right)$.


## The Traveling Salesman Problem <br> Constructive Heuristics

## Double Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.

- The DMST algorithm runs in $O\left(V^{2} \log V\right)$.
- In any graph, the weight of a MST is less than the weight of the optimal tour. Therefore, if the triangle inequality holds, the constructed tour is less than twice as long as the optimal tour. (approximation ratio 2)


## The Traveling Salesman Problem <br> Constructive Heuristics

## Double Minimum Spanning Tree algorithm

Step 1: Construct a minimal spanning tree, e.g. with Prim's algorithm. Step 2: Traverse the MST by DFS, but skip already visited cities.

- The DMST algorithm runs in $O\left(V^{2} \log V\right)$.
- In any graph, the weight of a MST is less than the weight of the optimal tour. Therefore, if the triangle inequality holds, the constructed tour is less than twice as long as the optimal tour. (approximation ratio 2)
- A variant of the DMST algorithm, the Christofides algorithm, achieves an approximation ratio of 1.5 in $O\left(V^{3}\right)$.


## The Traveling Salesman Problem Improvement Heuristics

Construct better solutions from existing ones!

## The Traveling Salesman Problem Improvement Heuristics

## Pairwise Exchange (2-opt) algorithm

Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).


## The Traveling Salesman Problem Improvement Heuristics

## Pairwise Exchange (2-opt) algorithm

Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).


## The Traveling Salesman Problem Improvement Heuristics

## Pairwise Exchange (2-opt) algorithm

Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).


## The Traveling Salesman Problem Improvement Heuristics

## Pairwise Exchange (2-opt) algorithm

Step 1: Remove two disjoint edges from the tour.
Step 2: Reconnect both paths to a valid tour (as short as possible).


## The Traveling Salesman Problem Improvement Heuristics

## Lin-Kernighan (variable-opt) algorithm

Step 1: Choose a suitable $k$ for the k-opt algorithm.
Step 2: Remove $k$ edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

## The Traveling Salesman Problem Improvement Heuristics

## Lin-Kernighan (variable-opt) algorithm

Step 1: Choose a suitable $k$ for the k-opt algorithm.
Step 2: Remove $k$ edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

- The LK algorithm (a single iteration) runs in approximately $O\left(V^{2.2}\right)$.


## The Traveling Salesman Problem Improvement Heuristics

## Lin-Kernighan (variable-opt) algorithm

Step 1: Choose a suitable $k$ for the k-opt algorithm.
Step 2: Remove $k$ edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

- The LK algorithm (a single iteration) runs in approximately $O\left(V^{2.2}\right)$.
- Even in Euclidean TSPs, 2-opt can take an exponential number of steps. In probabilistic instances, the expected number of steps is polynomial.


## The Traveling Salesman Problem Improvement Heuristics

## Lin-Kernighan (variable-opt) algorithm

Step 1: Choose a suitable $k$ for the k-opt algorithm.
Step 2: Remove $k$ edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

- The LK algorithm (a single iteration) runs in approximately $O\left(V^{2.2}\right)$.
- Even in Euclidean TSPs, 2-opt can take an exponential number of steps. In probabilistic instances, the expected number of steps is polynomial.
- There is no guaranteed improvement in tour length. In probabilistic instances, 2-opt approximately achieves a $5 \%$ gap, 3 -opt a $3 \%$ gap.


## The Traveling Salesman Problem Improvement Heuristics

## Lin-Kernighan (variable-opt) algorithm

Step 1: Choose a suitable $k$ for the k-opt algorithm.
Step 2: Remove $k$ edges from the tour.
Step 3: Reconnect the paths to a valid tour (as short as possible).

- The LK algorithm (a single iteration) runs in approximately $O\left(V^{2.2}\right)$.
- Even in Euclidean TSPs, 2-opt can take an exponential number of steps. In probabilistic instances, the expected number of steps is polynomial.
- There is no guaranteed improvement in tour length. In probabilistic instances, 2-opt approximately achieves a $5 \%$ gap, 3 -opt a $3 \%$ gap.
- Lin-Kernighan-Johnson can solve many instances to optimality.


## The Traveling Salesman Problem Randomized Heuristics

## Ant Colony Optimization algorithm

Send out a large number of virtual ants to explore many possible tours. As a simple method of communication, these ants rate edges by means of virtual pheromones. Each individual ant chooses its next destination randomized, based on a heuristic weighting of several simple factors:

## The Traveling Salesman Problem Randomized Heuristics

## Ant Colony Optimization algorithm

Send out a large number of virtual ants to explore many possible tours. As a simple method of communication, these ants rate edges by means of virtual pheromones. Each individual ant chooses its next destination randomized, based on a heuristic weighting of several simple factors:

- Near (visible) cities have a higher chance of being chosen.
- Edges with much pheromone have a higher chance of being chosen.
- Ants which completed a tour deposit pheromone on all edges traversed. The shorter the tour, the more pheromone is deposited.
- Over time, pheromone trails evaporate.


## The Traveling Salesman Problem Exact Algorithms

Find a guaranteed optimal solution!

## The Traveling Salesman Problem Exact Algorithms

## Brute Force algorithm

Try all permutations of cities and remember which one is cheapest.

## The Traveling Salesman Problem <br> Exact Algorithms

## Brute Force algorithm

Try all permutations of cities and remember which one is cheapest.

- The BF algorithm runs in $O(V!)$. Examples:

| \# cities | \# tours | est. time |
| ---: | ---: | ---: |
| 5 | 12 | $12 \mu \mathrm{~s}$ |
| 10 | 181000 | $0.2 s$ |
| 15 | $87 \times 10^{9}$ | $12 h$ |
| 20 | $60 \times 10^{15}$ | $2000 y$ |
| $n$ | $(n-1)!/ 2$ | $\ldots$ |

- Impractical for real-world instances.


## The Traveling Salesman Problem <br> Exact Algorithms

## Dynamic Programming algorithm

Solve the shortest subtour problem on subsequent larger subgraphs:
If we are at city $i$ and still have to visit all cities in $S$, then we have

$$
c^{*}(i, S)=\min _{j \in S}\left\{c(i, j)+c^{*}(j, S \backslash\{j\})\right\}
$$

## The Traveling Salesman Problem <br> Exact Algorithms

## Dynamic Programming algorithm

Solve the shortest subtour problem on subsequent larger subgraphs:
If we are at city $i$ and still have to visit all cities in $S$, then we have

$$
c^{*}(i, S)=\min _{j \in S}\left\{c(i, j)+c^{*}(j, S \backslash\{j\})\right\}
$$

- The DP algorithm runs in $O\left(n^{2} \cdot 2^{n}\right)$, but requires exponential space.


## The Traveling Salesman Problem <br> Exact Algorithms

## Dynamic Programming algorithm

Solve the shortest subtour problem on subsequent larger subgraphs: If we are at city $i$ and still have to visit all cities in $S$, then we have

$$
c^{*}(i, S)=\min _{j \in S}\left\{c(i, j)+c^{*}(j, S \backslash\{j\})\right\}
$$

- The DP algorithm runs in $O\left(n^{2} \cdot 2^{n}\right)$, but requires exponential space.
- It can be modified to only need polynomial space, at the expense of time complexity (e.g. $O\left(\right.$ poly $\left.(n) \cdot 2^{n}\right)$ or $O\left(4^{n}\right)$ ).


## The Traveling Salesman Problem <br> Exact Algorithms

TECHNISCHE

## Dynamic Programming algorithm

Solve the shortest subtour problem on subsequent larger subgraphs: If we are at city $i$ and still have to visit all cities in $S$, then we have

$$
c^{*}(i, S)=\min _{j \in S}\left\{c(i, j)+c^{*}(j, S \backslash\{j\})\right\}
$$

- The DP algorithm runs in $O\left(n^{2} \cdot 2^{n}\right)$, but requires exponential space.
- It can be modified to only need polynomial space, at the expense of time complexity (e.g. $O\left(p o l y(n) \cdot 2^{n}\right)$ or $O\left(4^{n}\right)$ ).
- It is an open problem if an algorithm with a base less than 2, e.g. with runtime in $O\left(p o l y(n) \cdot 1.999^{n}\right)$, exists.

The Traveling Salesman Problem Summary


SELUNG ON EBAY: O(1)

STIUL WORKING ON YOUR ROUTE?

http://xkcd.com/399/

# Outlook: Linear Programming Introduction 

## What comes after ADM?

## Outlook: Linear Programming Introduction

We have seen many algorithms to various problems.

## Outlook: Linear Programming Introduction

We have seen many algorithms to various problems.

## Is there one algorithm to rule them all?

## Outlook: Linear Programming Introduction

## Of course

All problems in P can be reduced to all P-hard problems. All problems in NP can be reduced to all NP-hard problems.

## Outlook: Linear Programming Introduction

## The right question is: Which problem makes for easy reductions?

Linear constraints are intuitive for humans.

## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{\top} x \mid A x \leq b\right\}
$$

## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b\right\}
$$



## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{\top} x \mid A x \leq b\right\}
$$

$1.5 \cdot x_{1}-x_{2} \leq 0.5$


## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b\right\}
$$



## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b\right\}
$$



## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{\top} x \mid A x \leq b\right\}
$$



## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{\top} x \mid A x \leq b\right\}
$$



## Outlook: Linear Programming Definition

## Linear Program (LP)

Optimize a linear objective function over a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b\right\}
$$



## Outlook: Linear Programming

## Examples

## Pottery

A potter is making cups and plates. It takes her 6 minutes to make a cup and 3 minutes to make a plate. Each cup uses $3 / 4 \mathrm{lb}$. of clay and each plate uses one lb. of clay. She has 20 hours available for making the cups and plates and has 250 lbs . of clay on hand. She makes a profit of $\$ 2$ on each cup and $\$ 1.50$ on each plate. How many cups and how many plates should she make in order to maximize her profit?

## Outlook: Linear Programming

## Examples

## Pottery

A potter is making cups and plates. It takes her 6 minutes to make a cup and 3 minutes to make a plate. Each cup uses $3 / 4 \mathrm{lb}$. of clay and each plate uses one lb. of clay. She has 20 hours available for making the cups and plates and has 250 lbs . of clay on hand. She makes a profit of $\$ 2$ on each cup and $\$ 1.50$ on each plate. How many cups and how many plates should she make in order to maximize her profit?
maximize

$$
2 x+1.5 y
$$

subject to

$$
\begin{aligned}
6 x+3 y & \leq 20 \cdot 60 & & x \geq 0 \\
0.75 x+y & \leq 250 & & y \geq 0
\end{aligned}
$$

## Outlook: Linear Programming Examples

Max Flow
Given a directed weighted graph $G=(V, E, c)$ with $c>0$ and two distinguished nodes $s$ and $t$, maximize the network flow from $s$ to $t$.

## Outlook: Linear Programming Examples

## Max Flow

Given a directed weighted graph $G=(V, E, c)$ with $c>0$ and two distinguished nodes $s$ and $t$, maximize the network flow from $s$ to $t$.
maximize

$$
\sum_{(s, f) \in E} x_{(s, f)}
$$

subject to

$$
\begin{aligned}
\forall v \in V \backslash\{s, t\}: & \sum_{(i, v) \in E} x_{(i, v)}=\sum_{(v, o) \in E} x_{(v, o)} \\
\forall e \in E: & 0 \leq x_{e} \leq c_{e}
\end{aligned}
$$

## Outlook: Linear Programming Examples

## Shortest Path

Given a directed weighted graph $G=(V, E, c)$ without a negative-weight cycle and two distinguished nodes $s$ and $t$, find the shortest path from $s$ to $t$.

## Outlook: Linear Programming Examples

## Shortest Path

Given a directed weighted graph $G=(V, E, c)$ without a negative-weight cycle and two distinguished nodes $s$ and $t$, find the shortest path from $s$ to $t$.
maximize

$$
x_{t}
$$

subject to

$$
\begin{gathered}
x_{s}=0 \\
\forall(u, v) \in E: \quad x_{v} \leq x_{u}+c_{(u, v)}
\end{gathered}
$$

# Outlook: Linear Programming Discussion 

## What does the term Programming mean?

## Outlook: Linear Programming Discussion

## What does the term Programming mean?

## Traditional Programming

- How can the solution be found?
- "Calculate a space curve for the 3D printer's laser to follow."


## Outlook: Linear Programming Discussion

## What does the term Programming mean?

## Traditional Programming

- How can the solution be found?
- "Calculate a space curve for the 3D printer's laser to follow."

Linear Programming

- What does a solution look like?
- "Load a CAD model of the desired object onto the 3D printer."


## Outlook: Linear Programming Algorithms

TECHNISCHE

## Simplex Method

If a feasible solution exists and if the objective function is bounded, the optimal objective value is attained at a vertex. Start at any vertex, then successively follow any edge to a better vertex until there is none.

## Interior Point Method

Start at any feasible point in the polyhedron, then derive any other point which is still in the polyhedron and has a better objective value. Do this fast enough and find a suitable termination criterion.

## Outlook: Linear Programming Generalization

The LP Decision Problem is (weakly) P-complete.

Is there a similar modeling language for NP?

## Outlook: Linear Programming Generalization

## Integer Linear Program (ILP)

Optimize a linear objective function over the integer points in a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$

## Outlook: Linear Programming Generalization

## Integer Linear Program (ILP)

Optimize a linear objective function over the integer points in a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$



## Outlook: Linear Programming Generalization

## Integer Linear Program (ILP)

Optimize a linear objective function over the integer points in a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$



## Outlook: Linear Programming Generalization

## Integer Linear Program (ILP)

Optimize a linear objective function over the integer points in a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$



## Outlook: Linear Programming Generalization

## Integer Linear Program (ILP)

Optimize a linear objective function over the integer points in a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$



## Outlook: Linear Programming Examples

## Knapsack Problem

Given a set of items $I$, each with a size $S$ and a value $V$. Maximize the total value of a knapsack with size $K$.

## Outlook: Linear Programming Examples

## Knapsack Problem

Given a set of items $I$, each with a size $S$ and a value $V$. Maximize the total value of a knapsack with size $K$.
maximize

$$
\sum_{i \in I} V_{i} x_{i}
$$

subject to

$$
\begin{gathered}
\sum_{i \in I} s_{i} x_{i} \leq K \\
\forall i \in I: \quad x_{i} \in\{0,1\}
\end{gathered}
$$

## Outlook: Linear Programming Examples

Traveling Salesman Problem
Given a complete undirected weighted graph $G=(V, E, c)$, find a Hamiltonian circuit of minimum total weight.

## Outlook: Linear Programming Examples

## Traveling Salesman Problem

Given a complete undirected weighted graph $G=(V, E, c)$, find a Hamiltonian circuit of minimum total weight.
minimize

$$
\sum_{(i, j) \in E} c_{(i, j)} x_{(i, j)}
$$

subject to

$$
\begin{gathered}
\forall j \in V: \quad \sum_{i \in V} x_{(i, j)}=1 \quad \forall i \in V: \quad \sum_{j \in V} x_{(i, j)}=1 \\
\forall S \subsetneq V,|S|>1: \quad \sum_{i \in S, j \in S, i \neq j} x_{(i, j)} \leq|S|-1
\end{gathered}
$$

## Outlook: Linear Programming Generalization

## Mixed-Integer Linear Program (MILP)

Optimize a linear objective function over integer hyperspaces in a convex polyhedron:

$$
\min \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}\right\}
$$

The best of both worlds, and more:

- semi-continuous variables, discontinuous domains, ...
- logic constraints: if-then, either-or, if-and-only-if, ...
- piecewise linearization, variable-product elimination, ...


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.

## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


## Outlook: Linear Programming Algorithms

## Branch and Bound method

Solve the LP-Relaxation, i.e., assume all variables to be continuous. If the solution does not satisfy the integer constraints, branch and repeat with the subproblems.


# Outlook: Linear Programming Generalization 

The ILP/MILP Decision Problem is NP-complete.

Is there a similar modeling language for PSPACE?

## Outlook: Linear Programming Generalization

## Quantified Mixed-Integer Linear Program (QMILP)

Optimize a linear objective function over integer hyperspaces in a convex polyhedron with quantified variables:

$$
\min \left\{c^{T} x \mid Q(x): A x \leq b, x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}\right\}
$$

Quantifiers are known from logic, e.g.:

$$
\begin{aligned}
& Q(x)=\exists x_{1} \forall x_{2} \exists x_{3}, x_{4} \text { Я } x_{5} \exists x_{6} \ldots \\
& \exists=\text { exists } \quad \forall=\text { for all } \quad \text { Я }=\text { for random }
\end{aligned}
$$

## Outlook: Linear Programming Generalization

## What consequences does the quantification have?

## Outlook: Linear Programming Generalization

## What consequences does the quantification have?

- The meaning of the objective function changes:

$$
\min c^{T} x \cong \min _{x_{1}} \max _{x_{2}} \min _{x_{3}, x_{4}} E_{x_{5}} \min _{x_{6}} c^{T} x
$$

## Outlook: Linear Programming Generalization

## What consequences does the quantification have?

- The meaning of the objective function changes:

$$
\min c^{T} x \cong \min _{x_{1}} \max _{x_{2}} \min _{x_{3}, x_{4}} E_{x_{5}} \min _{x_{6}} c^{T} x
$$

- The problem shows tendencies of a two-person game:
- The existential player wants to stay in the polyhedron and minimize the objective function.
- The universal player wants to leave the polyhedron and maximize the objective function.


## Outlook: Linear Programming Examples

Single-player Games (Patience games)
Kondike, Freecell, ...

## Outlook: Linear Programming Examples

# Single-player Games (Patience games) <br> Kondike, Freecell, ... 

## Two-player Games (Stategy games)

Tic-Tac-Toe, Chess, Checkers, Go, Gomoku, Reversi, ...

## Outlook: Linear Programming Examples

## Single-player Games (Patience games) <br> Kondike, Freecell, ...

## Two-player Games (Stategy games)

Tic-Tac-Toe, Chess, Checkers, Go, Gomoku, Reversi, ...

Two-player Games with Chance
Ludo, Backgammon, ...

## Outlook: Linear Programming Examples

## Production Planning under Uncertainty

- What is the most profitable production strategy for a given customer demand?


## Outlook: Linear Programming Examples

## Production Planning under Uncertainty

- What is the most profitable production strategy for a given customer demand?
- What is the best investment decision, if the customer demand is uncertain?


## Outlook: Linear Programming Examples

## Production Planning under Uncertainty

- What is the most profitable production strategy for a given customer demand?
- What is the best investment decision, if the customer demand is uncertain?


## Booster Stations under Uncertainty

- What is the most efficient pump operation for a given load collective?


## Outlook: Linear Programming Examples

## Production Planning under Uncertainty

- What is the most profitable production strategy for a given customer demand?
- What is the best investment decision, if the customer demand is uncertain?


## Booster Stations under Uncertainty

- What is the most efficient pump operation for a given load collective?
- What is the best initial topology, if the load collective is uncertain?


## Outlook: Linear Programming Software

## Want to try it out yourself?

http://gusek.sourceforge.net/

