Flow problems
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Let G=(V,E) be the graph of a flow problem. The company in Vancouver is called
source s, the market in Winipeg target t. many goods must be brought to the
target via some streets. Only ¢, such goods can be transported over (u,v). How
can we transport as many goods as possible from Vancouver to Winnipeg,

utilizing all paths from s to t?

Flow networks are used in order to model distribution problems, transport-
and reload problems ... Transported are water power, gas, cars ...
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Flow problem

Flow network:

« G=(V,E), directed graph,

« for all (u,v)€E, we have a non-negative capacity restriction c(u,v) >0
« if (u,v)¢E, then c(u,v)=0

« there are two special nodes: source s and target t (also called sink)

« for each node v, a path from s to v and from v to t exists

Let G=(V,E) be a flow network, let s be the source and t the sink. Aflow in G is a
function f: VxV — IR with:

* capacity constraint: f(u,v) < c(u,v) fur alle u,veVv
« symmetry: f(u,v) = -f(v,u) far alle u,v,€V
« flow conservation: Yvey fluyv) =

The value of a flow is
If] = >, ey f(s,v), i.e. the total flow out of s
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Flow problem
Ford-Fulkerson Algorithm

Def.: Given is a flow network and a feasible flow x from s to t. An ,augmenting
path® (or ,improving path®) is a path P from s to t, where the edge directions are

ignored, with the following properties:

 For each edge (a,b), which is forward-directed in P, it is valid: f(a,b) < c(a,b).
|.e. Forward edges have free capacities.
* For each edge (b,a), which is backwards-directed in P, it is valid: f(a,b) > O.

12/12
yg Q 75/20 Maximum change along P:
\ {c(a,b)-f(a,b) following forward edges

@ 0/10| |1/4 N |7/ MIN A f(a,b) following backward edges

edges
114 Q

;M
of P
N

(o)
jjy///




Flow problem
Ford-Fulkerson Algorithm

Ford-Fulkerson(G,s,t)

1. initialize flow to O

2. while there is an augmenting path p do
3. improve the flow along p

4. return f

We start with flow value 0 and increase the flow step by step.
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Flow problem
Residual Networks

Let f be a flow in G. ¢c{u,v) = c(u,v) - f(u,v) is called residual capacity.

Let G=(V,E) be a flow network and f a flow. The residual network then is

G; = (V,E;) with E; = {(u,v)€VxV | c{u,v)>0}. Note, in the residual graph may be
more nodes than in the original graph.

(why? f(v,u)>0 = f(u,v) < 0 =cHu,v) > c(u,v)):
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Residual Networks
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Flow problem
Residual Networks
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Flow problem
Cut:

A cut of a network is a partition of Vinto Sand T=V\ S, suchthat s Sandt &
T.

If f is a flow, then a so called netflow over a cut (S,T)is : > f(a,b)
(a,b)eE
aesS
beT
The capacity of a cut (S,T) is: C(S,T):== > c(a,b)
(a,b)eE
aesS

beT

® 1212 O

‘ 0/10| [1/4
/ Netflow over (S,T) is 19
S Capacity C(S,T) = 26
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Note: If (a,b) ¢ E, then itis c(a,b) = 0, but f(a,b) possiblly is < 0.

<«
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Flow problems
Residual networks

Claim ResNet1: Let G = (V,E) be a flow network and let f be a flow. Let G’ be the
residual network of G and let f be a flow in G* along an improving path. Then it is
valid for the sum of the flows f+ f: |f + | = |f| + ||

Proof: follows directly from the construction of G’

Claim ResNet2: If (S,T) is a cut, the flow from S to T cannot be larger then the
capacity of the cut.

Proof: Fur each single edge (u,v) from S to T it is f(u,v) < c(u,v). Thus it is also
valid for the sum over all edges from S to T:

2uesvet(U,V) S Y esvet C(U,V)
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Flow network
Residual Network

Max-flow min-cut Theorem
Let f be a flow in a flow network G=(V,E) with source s and sink t. Then, the

following statements are equivalant to each other:

1. fis a maximum flow
2. the residual network G; contains no augmenting path

3. thereisacut (S,T)suchthat |f| = c5,erC(U,Vv)

1 = 2: Let us assume that f is a maximum flow, and G; contains an augmenting
(improving) path f'. However, the augmenting path is chosen such that it helps
improving the flow. This would imply |f + f'| > |f|. Then f was not maximum.

2 = 3: Let no augmenting path exist. Then there is no path in G; from s to t (, with
capacities > 0). Define

S := {veV with: there is a path from s to v in G}
Then it is (S,T=V\S) a partition and for each edge (u,v) withueS and veT itis
f(u,v)=c(u,v), because otherwise: (u,v)EE..
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Flow problems
Residual networks

Max-flow min-cut Theorem
Let f be a flow in a network G=(V,E) with source s and sink t. Then the following

statements are equivalent to each other:

1. fis a maximum flow

2. The residual network G; contains no augmenting path

3. thereis acut (S,T)suchthat [f| = } 5 e7C(U,V)

3= 1:Let [f|=),esveTC(U,V), for S and T as in point 2. Because of Caim

ResNet2 there is no increasing flow.

How do we find imrpving paths? With Breadth First Search.
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Flow problem
Residual Network
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Flow problem
Ford-Fulkerson Algorithm

ClaimFF1: When the Ford-Fulkerson Algorithm halts, it terminates with optimal
solution.

Prf.. After termination, build the sets S and T as in the Max-flow min-cut
Theorem. All forward edges are then saturated, all backward edges empty.
(Otherwise, the algorithm would not have halted). The (S,T)-cut has the same
value as the flow delivered by the algorithm.

ClaimFF2: The Ford-Fulkerson Algorithm terminates after finitely many steps, as
long as all input parameters are natural or rational numbers.

Prf.: natural numbers: clear, because the flow is increased by integer units.

Rational numbers: clear, because we can multiply all numbers with a common
denominator.




Adjunct problems of the maximum flow
problem

1. Several sources and sinks
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Adjunct problems of the maximum flow
problem

2. Maximum Matching in bipartite graphs

L R L R

Matching of size 2 Maximum-Matching of size 3




Adjunct problems of the maximum flow
problem

2. Maximum Matching in bipartiten Graphs

L R E'={(s,u):uelL}
U{(u,v):ueL,veR, (uv)ekE
U{(ut):ueR}

, and unit weights for edges




Adjunct problems of the maximum flow
problem
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2. Maximum Matching in bipartiten graphs

Claim MaxBiMa: Let G=(V,E) be a bipartite graph with node partitioning
V=L U R. Let G'=(V',E’) the corresponding flow network. Then:

If M is a matching in G, then there is an integer flow G’ with
[f| = |M|. If vice versa f is an integer flow in G, then there is a
matching M in G with [f|=]|M]|.

Proof: Exercise




