
  

v1 

v2 

v3 

v4 

s t 
Vancouver 

Edmonton Saskatoon 

Winnipeg 

Regina Calgary 

Let G=(V,E) be the graph of a flow problem. The company in Vancouver is called 
source s, the market in Winipeg target  t. many goods must be brought to the 
target via some streets. Only cu,v such goods can be transported over (u,v). How 
can we transport as many goods as possible from Vancouver to Winnipeg, 
utilizing all paths from s to t? 
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Flow networks are used in order to model distribution problems, transport- 
and reload problems … Transported are water power, gas, cars … 
  

Flow problems 



Flow problem 

Flow network:  
•  G=(V,E), directed graph,  
•  for all (u,v)∈E, we have a non-negative capacity restriction c(u,v) > 0 
•  if (u,v)∉E, then c(u,v)=0 
•  there are two special nodes: source s and target t (also called sink) 
•  for each node v, a path from s to v and from v to t exists 
 
Let G=(V,E) be a flow network, let s be the source and t the sink. A flow in G is a 
function f: V×V → IR with: 
•  capacity constraint:   f(u,v) ≤ c(u,v) für alle u,v∈V 
•  symmetry:    f(u,v) = -f(v,u) für alle u,v,∈V 
•  flow conservation:   ∑v∈V f(u,v) = 0 

The value of a flow is 
   |f| = ∑v∈V f(s,v), i.e. the total flow out of s  
 



Def.: Given is a flow network and a feasible flow x from s to t. An „augmenting 
path“ (or „improving path“) is a path P from s to t, where the edge directions are 
ignored, with the following properties: 
 
•  For each edge (a,b), which is forward-directed in P, it is valid: f(a,b) < c(a,b).   
  I.e. Forward edges have free capacities. 
•  For each edge (b,a), which is backwards-directed in P, it is valid:  f(a,b) > 0. 
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Maximum change along P: 
 
min  

c(a,b)-f(a,b) following forward edges 
f(a,b) following backward edges 

edges 
of P 

Flow problem 
Ford-Fulkerson Algorithm  
 



Flow problem 
Ford-Fulkerson Algorithm 

Ford-Fulkerson(G,s,t) 
 1. initialize flow to 0 
 2. while there is an augmenting path p do 
 3.    improve the flow along p 
 4. return f 
 
We start with flow value 0 and increase the flow step by step.  



Flow problem 
Residual Networks 

Let f be a flow in G. cf(u,v) = c(u,v) - f(u,v) is called residual capacity. 
 
Let G=(V,E) be a flow network and f a flow. The residual network then is 
Gf = (V,Ef) with Ef = {(u,v)∈V×V | cf(u,v)>0}. Note, in the residual graph may be 
more nodes than in the original graph. 
(why? f(v,u)>0 ⇒ f(u,v) < 0 ⇒cf(u,v) > c(u,v)): 
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Cut: 

A cut  of a network is a partition of V into  S and T = V \ S, such that  s ∈ S and t ∈ 
T.  
 
If f is a flow, then a so called  netflow over a cut  (S,T) is :                   ∑    f(a,b)  
 
 
The capacity of a cut (S,T) is:                C(S,T) :=   ∑     c(a,b)  
 
 
 
 
 

(a,b)∈E 
a ∈ S 
b ∈ T 

(a,b)∈E 
a ∈ S 
b ∈ T 
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Netflow over (S,T) is 19 
Capacity C(S,T) = 26 

Flow problem 

Note: If  (a,b) ∉ E, then it is c(a,b) = 0, but f(a,b) possiblly is  < 0. 



Claim ResNet1: Let G = (V,E) be a flow network and let f be a flow. Let G‘ be the 
residual network of G and let f‘ be a flow in G‘ along an improving path. Then it is 
valid for the sum of the flows  f + f‘: |f + f‘| =  |f| + |f‘| 
 
Proof: follows directly from the construction of G‘ 
 
Claim ResNet2: If (S,T) is a cut, the flow from S to T cannot be larger then the 
capacity of the cut. 
Proof: Für each single edge (u,v) from S to T it is f(u,v) ≤ c(u,v). Thus it is also 
valid for the sum over all edges from S to T: 
∑u∈S,v∈Tf(u,v) ≤ ∑u∈S,v∈T c(u,v) 
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Max-flow min-cut Theorem  
Let f be a flow in a flow network G=(V,E) with source s and sink t. Then, the 
following statements are equivalant to each other: 
 
1.   f is a maximum flow 
2.   the residual network  Gf  contains no augmenting path  
3.   there is a cut  (S,T) such that  |f| = ∑u∈S,v∈T c(u,v)  

1 ⇒ 2: Let us assume that f is a maximum flow, and  Gf contains an augmenting 
(improving) path f‘. However, the augmenting path is chosen such that it helps 
improving the flow. This would imply  |f + f‘| > |f|. Then f was not maximum. 

2 ⇒ 3: Let no augmenting path exist. Then there is no path in Gf from s to t (, with 
capacities > 0). Define 
  S := {v∈V with: there is a path from s to v in Gf} 
 Then it is (S,T=V\S) a partition and for each edge (u,v) with u∈S and v∈T it is 
f(u,v)=c(u,v), because otherwise: (u,v)∈Ef. 
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Max-flow min-cut Theorem  
Let f be a flow in a network G=(V,E) with source s and sink t. Then the following 
statements are equivalent to each other: 
 
1.   f is a maximum flow 
2.   The residual network  Gf contains no augmenting path 
3.   there is a cut (S,T) such that |f| = ∑u∈S,v∈T c(u,v)  

 
3 ⇒ 1: Let  |f| = ∑u∈S,v∈T c(u,v), for S and T as in point 2. Because of Caim  

ResNet2 there is no increasing flow. 
 
 
How do we find imrpving paths? With Breadth First Search.   
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ClaimFF1: When the Ford-Fulkerson Algorithm halts, it terminates with optimal 
solution. 
Prf.: After termination, build the sets  S and T as in the Max-flow min-cut 
Theorem. All forward edges are then saturated, all backward edges empty. 
(Otherwise, the algorithm would not have halted). The (S,T)-cut has the same 
value as the flow delivered by the algorithm. 

ClaimFF2: The Ford-Fulkerson Algorithm  terminates after finitely many steps, as 
long as all input parameters are natural or rational numbers. 
 
Prf.: natural numbers: clear, because the flow is increased by integer units.  
Rational numbers: clear, because we can multiply all numbers with a common 
denominator. 
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Adjunct problems of the maximum flow 
problem  
 
 1. Several sources and sinks 

s1 t1 

t2 

s2 

s 

t ∞ 

∞ 

∞ 
∞ 



Adjunct problems of the maximum flow 
problem  
 
 
 2. Maximum Matching in bipartite graphs 

Matching of size 2 Maximum-Matching of size 3 

L R L R 



Adjunct problems of the maximum flow 
problem 
 
 2. Maximum Matching in bipartiten Graphs 

L R E‘ = { (s,u) : u∈L } 
      ∪{(u,v) : u∈L,v∈R, (u,v)∈E} 
      ∪{ (u,t) : u∈R } 
, and unit weights for edges 

s t 



Adjunct problems of the maximum flow 
problem 
 
 2. Maximum Matching in bipartiten graphs 

 
Claim MaxBiMa: Let G=(V,E) be a bipartite graph with node partitioning  
V = L ∪ R. Let G‘=(V‘,E‘) the corresponding flow network. Then: 
 
If M is a matching in G, then there is an integer flow G‘ with 
|f| = |M|. If vice versa f is an integer flow in G‘, then there is a  
matching M in G with |f|=|M|. 
 
Proof: Exercise  


