Graphs and classic graph problems

- Encoding of graphs: edge lists, adjacency lists, node-edge incidence matrix adjacency matrix
- edge list
- If $G=(V, E)$ is a graph with $n=|V|$ nodes and $m=|E|$ edges, the edge list will look as follows:

$$
\mathrm{n}, \mathrm{~m},\left\{\mathrm{a}_{1}, \mathrm{e}_{1}\right\},\left\{\mathrm{a}_{2}, \mathrm{e}_{2}\right\}, \ldots,\left\{\mathrm{a}_{\mathrm{m}}, \mathrm{e}_{\mathrm{m}}\right\}, \text { with }\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}}\right\} \text { are end nodes of edge } \mathrm{i}
$$

- The sequential arrangement of edges within the list is arbitrary
- $\{\mathrm{v}, \mathrm{v}\}$ is inserted for a loop
- In directed graphs, the first edge component marks the start node, the other one the end node

Graphs and classic graph problems

Example:

edge list: $4,6,\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{4}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{1}\right\}$

Graphs and classic graph problems

Edges may be supplied with weights or costs. I.e., there is a cost function c: $\mathrm{E} \rightarrow \mathrm{Q}$

Encoding: weights for the edges are noted.
An edge list consumes $2 m+2$ memory cells for storeing, an edge list with weights $3 m+2$ cells.

Graphs and classic graph problems

- Graph coding: edge lists, adjacency matrizes, node-edge incidencematrizes, adjacency lists
- Adjacency matrix
- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph (i.e. no more than one edge per node pair) with nodes $1, \ldots, n$. Then, the matrix $A \in \mathbb{R}^{n \times n}$ with
- $A_{i j}=1$, if (i, j) is an edge,
- $A_{i j}=0$, otherwise
is called the adjacency matrix of G .
- If A has edge weights, then we set $A_{i j}=c((i, j))$, if $(i, j) \in E$; and $A_{i j}=0,+\infty$, oder $-\infty$ otherwise, depending on the task.
- Memory consumptions is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ cells.

Graphs and classic graph problems

Examples:

Adjacency matrix:

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Graphs and classic graph problems

- Graph coding: edge lists, adjacency matrizes, node-edge incidencematrizes, adjacency lists
- node-edge-incidence matrix
- Let $G=(V, E)$ be a simple directed graph with the nodes $1, \ldots, n$. The matrix $A \in$ $\{-1,0,1\}^{|V| \times|E|}$ with
- $A_{i j}=1$, if edge j leaves node i,
- $A_{i j}=-1$, if edge j directs into node i,
- $\mathrm{A}_{\mathrm{ij}}=0$ otherwise
is called node-edge-incidence matrix of G.
- Memory consumption: $\mathrm{O}(|\mathrm{V}| \cdot|\mathrm{E}|)$ cells.

Graphs and classic graph problems

Examples:

node-edge-incidence matrix:

	$\begin{array}{llll} v_{1} & v_{1} & v_{2} & v_{4} \\ v_{4} & v_{4} & v_{3} & v_{2} \\ v_{3} & & \end{array}$
v_{1}	$\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right)$
v_{2}	$\begin{array}{llll}-1 & 0 & 1 & -1\end{array}$
v_{3}	0 -1 -1 0 - -1
	001

Graphs and classic graph problems

- Graph coding: edge lists, adjacency matrizes, node-edge incidencematrizes, adjacency lists

- Adjacencyliste

When we store the number of nodes for a graph $G=(V, E)$ plus the degree and the neighbours of each node, such a data structure will be called an adjecencylist of G.
Memory consumtion: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$.

\#nodes	No. of node	degree	neighbour
4	1	2	2,3
	2	3	$1,3,4$
	3	3	$1,2,4$
	4	3	$2,3,4$

