Graphs and classic graph problems

- What is a graph?
- An undirected graph is a pair $G=(V, E)$, with $E \subseteq\{\{u, v\} \mid u, v \in V\}$.
- The elememts of E are not ordered.
- Elements of V are called nodes, or vertices resp.

Elements of E are called edges

- A directed graph is a pair $G=(V, E)$ as well. However, the elements of E are ordered pairs of elements of V . Thus
$E \subseteq\{(u, v) \mid u, v \in V\}$.
- Elements of \vee are called nodes

Elements of E are called directed edges (in ger.: gerichtete Kanten or Bögen)

Graphs and classic graph problems

Neighborhood relations

Incidence: A node v is said to be incident to an edge e if : $v \in e$.

adjacency: Two nodes are called adjacent in G, if $\{x, y\} \in E$.

Degree: The degree of a node $v[\operatorname{deg}(v)]$ is the number of with v incident edges.
Clique: If any two nodes of G a neighbors, G is called the complete graph.
G is also called a clique.

Graphs and classic graph problems

Proof: counting edges
Claim: $\{v \mid \operatorname{deg}(v)$ odd $\}$ is even
Proof:clear

Graphs and classic graph problems

TECHNISCHE
UNIVERSITÄT

- Paths and Cycles

-A path in a graph (directed or non-directed) $G=(V, E)$ is a sequence of nodes $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ from V, such that for all $i \in\{1, \ldots, k\}$ is valid that $\left(v_{i-1}, v_{i}\right) \in E\left(\operatorname{or}\left\{v_{i}\right.\right.$ $\left.{ }_{-1}, V_{i}\right\} \in E$, resp.) is an edge.
If $i<j, v_{i}$ is called a predecessor of v_{j}, and v_{j} a successor of v_{i}
-A path is called simple, if no node occurs more than once in the sequence $\left(v_{1}, \ldots, v_{k}\right)$.
-A simple path is called cycle, if $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$.
-A graph is called acyclic (ger.: kreisfrei), if there is no cycle contained in the graph.

Graphs and classic graph problems

- Connected components
-A undirected graph G is connected, if there is a path from v to w for all node pairs $\mathrm{v}, \mathrm{w} \in \mathrm{V}$.
- A directed graph is strongly connected, if there are paths from all nodes to any other node.
- Connected parts of G are called connected components.

Reminder: A set V with binary relation is called an equivalence relation if for all for all $x, y, z \in V$:
i) $x \sim x$, reflexive
ii) $x \sim y=>y \sim x$, symmetric
iii) $x \sim y$ and $y \sim z=>x \sim z$, transitive

Observations: Connected components of a graph form equivalence classes.

Graphs and classic graph problems

Seven bridges of Königsberg (Euler 1736):

Is it possible was to find a walk through the city that would cross each bridge once and only once? Such a walk is called Eulerian path.
land mass 1

An Eulerian path with identical start and end point is called Eulerian cycle.
\rightarrow no, both do not exist in Königsberg of 1736.

Graphs and classic graph problems

Seven bridges of Königsberg (Euler 1736):

Claim: A necessary and sufficient condition for a walk of the desired form is that the graph is connected and has exactly zero (-> Eulerian cycle) or two nodes (-> Eulerian path) of odd degree.

Haus vom Nikolaus contains

- 1 node of degree 2
- 2 nodes of degree 4
- 2 nodes of degree 3
\rightarrow Contains an Eulerian path, but no Eulerian cycle.

Graphs and classic graph problems

Bipartite graphs

A graph is called bipartit, if it is possible to partition V into two disjoint parts V_{1} and V_{2}, such that each edge has one end in V_{1} and the other one in V_{2}.

Claim: A graph is bipartite if and only if any cycle in the graph has even length.
Proof: Exercise

Graphs and classic graph problems

- A tree is a connected graph without any cycles
-A forest is a graph without any cyles, thus a collection of trees.
- Nodes with degree 1 are called leaf, the others inner nodes.

Claim: A forest F has $|E|=|V|-C(F)$ edges, with C number of components.
Claim: If $|E|>|V|-C(F)$, G will contain a cycle.
Claim: For any tree is valid: $|\mathrm{E}|=|\mathrm{V}|-1$
Proof: Exercise

Graphs and classic graph problems

- subgraphs, spanning subgraphs
$-G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called subgraph of $G=(V, E)$, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.
$-\mathrm{G}^{\prime} \subseteq \mathrm{G}$ is called a spanning subgraph of G , when additionally: $\mathrm{V}^{\prime}=\mathrm{V}$

Graph with subgraph

spanning tree

Claim: A graph is connected iff it contains a spanning tree.
(Proof: <=: clear; =>: remove edges from cycles)

Graphs and classic graph problems

- Complementary Graph
- The for G complementary graph G^{\prime} is the graph

$$
G^{\prime}=\left(V, E^{\prime}\right) \text {, with }(i, j) \in E^{\prime} \Leftrightarrow(i, j) \notin E
$$

- Claim: At least one of the graphs G or G^{\prime} is connected. Proof: Exercise.

