The classes \mathbf{P} and NP

Decision problem

- Problem with only two possible answers „yes" or „no"
- Examples: Is n a prime number? Does a solution path in the Solitair-game exist?

Optimization problem

- given.: an implicitely or exolicitely described set Ω of possible solutions and an evaluation function $f: \Omega \rightarrow I R$. wanted: a solution x with $f(x)=\max \{g(x) \mid x \in \Omega\}$
- Examples: Find a best possible fleet assignment.

Decision- and Optimization problems can be transformed to each other.

The classes \mathbf{P} and NP

The class P: informal description

- set of those Decision problems, for that an algorithm exists, which solves the problem and which consumes no more than polynomial runtime.

The class P: formal definition

- Let an encoding scheme E and a computational model M be given.
- Let Π be a decision problem, and let each instance be encoded with the help of the encoding scheme E.
- Π belongs to the class P (with regard to E and M), if there is an on M implementable algorithm that solves all instances of Π, with a worst-case runtime function which is bounded by a polynomial.

The classes P and NP, examples

given: an arbitrary start position of $n \times n$-solitair

wanted: yes/no with yes, if more than half of the stones have left the board.
\rightarrow simple
\rightarrow in P
given: an arbitrary start position of $n \times n$-solitair wanted: yes/no with yes, when tit is possible to play in such a way that exactly one stone remains in the middle.
\rightarrow intuitively not that easy
\rightarrow in „NP"

The classes \mathbf{P} and NP

NP, definition 1:

A decision problem Π belongs to class $N P$, if it is valid:

- For each instance $I \in \Pi$ with answer „yes", there is (at least) one object Q that helps to verify the answer "yes".
- There exists an algorithm which accepts an instance $I \in \Pi$ and an additional object Q as its input and verifies the answer „yes" with runtime polynomial in <l>+<Q>.
- No statement how Q is computed. Q can be guessed by an oracle.
- The only statement for "no" instances is that there has to be an algorithm which correctly outputs „yes" or „no" in finite time.

The classes \mathbf{P} and NP

$N P$, definition 2 (equivalent to previous one):
The class NP is defined via a so called non-deterministic RAM. Such a machine possesses an additional instruction „goto L1 or goto L2;".

A problem Π is in NP if there is a (non-deterministic) algorithm A (for the nondeterministic RAM) such that for any instance $I \in \Pi$ with answer "yes" there is a computation-path of polynomial length in <l>. A must halt on all instances.

P, NP, PSPACE

- P: Class of problems which can be solved with he help of a deterministic RAM in polynomial time
- NP: Class of problems which can be solved with the help of a non-deterministic RAM in polynomial time.
- PSPACE : Class of problems which can be solved with the help of a deterministic RAM with no more than polynomial space

$\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{E X P T I M E}$

- Only known: P = EXPTIME and
- EXPTIME $=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)$
- Most researchers assume that the inclusions are strict.

Typical examples from NP

-Definition: HAMPATH

- The Hamiltonian path problem
- given.:
- a directed graph
- two nodes s,t
- wanted.: does a path from stit exist, such that all nodes are visited once, but no edge twice?
- Algorithm for Hamiltonian path:
- Guess a permutation ($\mathrm{s}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-2}, \mathrm{t}$)
- Check, whether the permutation describes a path
- If yes, do accept
- If no, throw it away
-Therefore: HamPath \in NP

Typical examples from NP

The SAT problem

- A boolean function $f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, . ., \mathrm{x}_{\mathrm{n}}\right)$ is satisfiable, if there is an assignment for $x_{1}, x_{2}, . ., x_{n}$ such that $f\left(x_{1}, x_{2}, . ., x_{n}\right)=1$
- $(x \vee y) \wedge(z \vee \neg x \vee \neg y) \wedge(x \vee \neg z)$ is satisfiable, because
- the assignment $x=1, y=0, z=0$
- delivers $(1 \vee 0) \wedge(0 \vee 0 \vee 1) \wedge(1 \vee 1)=1 \wedge 1 \wedge 1=1$.
- Definition (SAT problem, the origin of all NPc problems)
- Given:
- Boolean Function ϕ
- Wanted:
- Is there $\mathrm{x}_{1}, \mathrm{x}_{2}, . ., \mathrm{x}_{\mathrm{n}}$ such that $\phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, . ., \mathrm{x}_{\mathrm{n}}\right)=1$
- SAT is in NP. It is supposed that SAT is not in P.

Classification of problems in P, NP, PSPACE

TECHNISCHE
UNIVERSITÄT

The reduction technique

Definition: Let P and Q be problems. Let $L_{P}\left(\right.$ or $\left.L_{Q}\right)$ be the set of Instances of the problem $P($ or $Q)$ with answer "yes". Additionally, let Σ be an alphabet for problem encoding and Σ^{*} the set of all possible strings over the alphabet. P is said to be polynomialy reducible to $Q\left(P \leq_{p} Q\right)$ if there is an in polynomial time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that

NP-hardness

- Definition:
- A problem S is called NP-hard if:
- every problem from NP can be reduced to S with the help of a polynomial time reduction, i.e.
- for all $L \in N P: L \leq_{p} S$
- Theorem
- if any NP-hard problem is in P, it will $P=N P$
- Proof
- If $S \in P$ and for all $L: L \leq{ }_{p} S$ $\rightarrow L \in P$.

NP-completeness

- Definition:
- A problem S is NP-complete if:
- $S \in N P$
- S is NP-hard
- Corollary:
- If any NP-complete problem is in P, it will hold $P=N P$
- Proof:
- Follows from NP-hardness of an NP-complete problem.

The 3-SAT-problem and the Clique-problem

-3-SAT:

- Given:
- A boolean formula in 3-CNF
- Wanted:
- A satisfying assignment
-Definition k-clique
- An undirected graph Graph $G=(V, E)$ contains a k-clique,
- If it contains k nodes, such that
- Each of the k nodes is connected with each other one in G
- CLIQUE:
- Given:
- An undirected graph G
- A natural number k
- Wanted:
- Does G contain a clique of size k ?

$$
\begin{aligned}
\psi= & \left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge \\
& \left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge \\
& \left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
\end{aligned}
$$

3-SAT can be reduced to clique

3-SAT läßt sich auf Clique reduzieren

- Theorem: 3-SAT $\leq_{m, p}$ CLIQUE
- Proof
- Construct a reduction function f as follows :
$-\mathrm{f}(\phi)=<\mathrm{G}, \mathrm{k}>$
- $k=$ number of clauses
- For each clause C in $\phi, 3$ nodes are created, assigned with the names of the literals of that clause
- Add an edge between a pair of nodes if and only if
- The two nodes do not belong to the same clause and

- The two nodes do not correspond to the same variable, once negated and once not.

$$
\psi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

$$
\psi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

Correctness

- The reduction function is correct:
- Claim;
- There is a true assignment of variables in ϕ if and only if there is a k -clique in G
- 1. case: a true assignment exists in ϕ
- Then, this assignment forces at least one literal to true, in each clause
- Choose such a literal from the node set for all clauses
- The chosen node set then consists of k nodes
- Between all these nodes exists an edge, because a variable and its negation cannot be both true
- 2. case: a k-clique exists in G
- Each node of the clique belongs to another clause
- Set the corresponding literals to true 1
- Determine the corresponding variables
- No contradiction occurs, because there is no edge between any literal and its negation
- runtime:
- Construction of the graph and the edges consume no more than quadratic time.

