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The classes P and NP 

Decision problem 

•  Problem with only two possible answers  „yes“ or „no“ 

•  Examples: Is n a prime number? Does a solution path in the Solitair-game exist?  

Optimization problem 

•  given.: an implicitely or exolicitely described set  Ω of possible solutions  
  and an evaluation function f : Ω à IR.  
  wanted: a solution x with f(x) = max{ g(x) | x ∈Ω } 

•  Examples: Find a best possible  fleet assignment. 

Decision- and Optimization problems can be transformed to each other. 
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The classes P and NP 

The class P: informal description 

•  set of those Decision problems, for that an algorithm  exists, which solves the 
  problem and which consumes no more than polynomial runtime.  

The class  P: formal definition 

•  Let an encoding scheme  E and a computational model M be given.  
•  Let Π be a decision problem, and let each instance be encoded with the help of 
  the encoding scheme E.  
•  Π belongs to the class P (with regard to E and M), if there is an on M  
  implementable algorithm that solves all instances of Π , with a worst-case  
  runtime function which is bounded by a polynomial.   
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The classes P and NP, examples 

given: an arbitrary start position of n×n-solitair 
wanted: yes/no with yes, if more than half of the stones have  left the board. 
  à simple  
  à in P 

given: an arbitrary start position of n×n-solitair 
wanted: yes/no with yes, when tit is possible  to play in such a way that exactly 
one stone remains in the middle. 
  à intuitively not that easy  
  à in „NP“ 
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The classes P and NP 

NP, definition 1: 
A decision problem  Π belongs to class  NP, if it is valid: 
•  For each instance  I∈Π with answer „yes“, there is (at least) one object Q that  
  helps to verify the answer „yes“.  
•  There exists an algorithm which accepts an instance  I∈Π and  an additional  
  object Q as its input and verifies the answer „yes“ with runtime polynomial in  
  <I>+<Q>. 

•  No statement how Q is computed. Q can be guessed by an oracle. 
•  The only statement for „no“ instances is that there has to be an algorithm which 
correctly outputs „yes“ or „no“ in finite time. 
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The classes P and NP 

NP, definition 2 (equivalent to previous one): 
The class  NP is defined via a so called non-deterministic RAM. Such a machine 
possesses an additional instruction  „goto L1 or goto L2;“.  

A problem  Π is in NP if there is a (non-deterministic) algorithm  A (for the non-
deterministic RAM) such that for any instance I∈Π  with answer „yes“ there is a 
computation-path of polynomial length in <I>. A must halt on all instances.  
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P, NP, PSPACE 

§  P: Class of problems which can be solved with he help of a deterministic RAM in  
      polynomial time 

§   NP: Class of problems which can be solved with the help of a non-deterministic  
     RAM in polynomial time.  

§   PSPACE : Class of problems which can be solved with the help of a  
     deterministic RAM with no more than polynomial space 

§  Only known:  P ≠ EXPTIME and 

§  EXPTIME = 

§  Most researchers assume that the inclusions  
     are strict. 

. 
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Typical examples from NP 

• Definition: HAMPATH 
–  The Hamiltonian path problem  

•  given.:  
–  a directed graph 
–  two nodes s,t 

•  wanted.: does a path from s ti t 
exist, such that all nodes are 
visited once, but no edge twice? 

• Algorithm for Hamiltonian path: 
–  Guess a permutation (s,v1,v2,...,vn-2,t) 
–  Check, whether the permutation 

describes a path 
•  If yes, do accept 
•  If no, throw it away 

• Therefore: HamPath ∈ NP 
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The SAT problem 

§ A boolean function f(x1,x2,..,xn) is satisfiable, if there is an assignment 
for x1,x2,..,xn such that f(x1,x2,..,xn) = 1 

§  (x ∨ y) ∧ (z ∨ ¬x ∨ ¬y) ∧ (x ∨ ¬z) is satisfiable, because 
§  the assignment x = 1, y = 0, z = 0 

§  delivers (1 ∨ 0) ∧ (0 ∨ 0 ∨ 1) ∧ (1 ∨ 1) = 1 ∧ 1 ∧ 1 = 1. 

§ Definition (SAT problem, the origin of all NPc problems) 
– Given: 

§  Boolean Function φ 
– Wanted: 

§  Is there x1,x2,..,xn such that φ(x1,x2,..,xn) = 1 

§ SAT is in NP. It is supposed that SAT is not in P. 

Typical examples from NP 
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The reduction technique 

Definition: Let P and Q be problems. Let LP (or LQ) be the set of Instances 
of the problem P (or Q) with answer „yes“. Additionally, let ∑ be an alphabet 
for problem encoding and  ∑* the set of all possible strings over the 
alphabet. P is said to be polynomialy reducible to Q (P ≤p Q) if there is an in 
polynomial time computable function  f: ∑*→∑*  such that  

x ∈ LP ⇔ f(x) ∈ LQ 

E.g.: P-instances Q-instances 

yes 

no no 

yes 

Classification of problems in P, NP, PSPACE 
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NP-hardness 

•  Definition: 
– A problem S is called  NP-hard  if: 

•  every problem from NP can be 
reduced to S with the help of a 
polynomial time reduction, i.e. 

•  for all L ∈NP: L ≤p S 
•  Theorem 

–  if any NP-hard problem is in P, it 
will P=NP 

•  Proof 
–  If S ∈ P and  for all L: L ≤ p S   
à L ∈ P. 

-hard 
problem 
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NP-completeness 

•  Definition: 
– A problem S is NP-complete if: 

• S ∈ NP 
• S is NP-hard 

•  Corollary: 
–  If any NP-complete  problem is in 

P, it will hold P=NP 
•  Proof: 

– Follows from NP-hardness of an 
NP-complete problem. 

NP-complete 
problem 
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The 3-SAT-problem and the Clique-problem 

• 3-SAT: 
–  Given: 

•  A boolean formula in 3-CNF 
–  Wanted: 

•  A satisfying assignment 

• Definition k-clique 
–  An undirected graph Graph G=(V,E) 

contains a k-clique,  
•  If it contains k nodes , such that  
•  Each of the k nodes is connected 

with each other one in G 
• CLIQUE: 

–  Given: 
•  An undirected graph G 
•  A natural number k 

–  Wanted: 
•  Does G contain a clique of size k?  

k=4 
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3-SAT can be reduced to clique 

•  Theorem: 3-SAT ≤p CLIQUE 

k=4 
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3-SAT läßt sich auf Clique reduzieren 

•  Theorem: 3-SAT ≤m,p CLIQUE 
•  Proof 

–  Construct a reduction function f as 
follows : 

–  f(φ) = <G,k> 
–  k = number of clauses 
–  For each clause C in φ, 3 nodes are 

created, assigned with the names of 
the literals of that clause 

–  Add an edge between a pair of nodes 
if and only if 

•  The two nodes do not belong to 
the same clause and  

•  The two nodes do not correspond 
to the same variable, once 
negated and once not. 
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Correctness 

•  2. case: a k-clique exists in G 
– Each node of the clique belongs to 

another clause 
–  Set the corresponding literals to true 1 
– Determine the corresponding 

variables 
– No contradiction occurs, because 

there is no edge between any literal 
and its negation 

•  runtime: 
– Construction of  the graph and the 

edges consume no more than 
quadratic time. 

•  The reduction function is correct: 
•  Claim; 

– There is a true assignment of 
variables in φ if and only if there is a 
k-clique in G 

•  1. case: a true assignment exists in φ 
– Then, this assignment forces at least 

one literal to true, in each clause 
– Choose such a literal from the node 

set for all clauses 
– The chosen node set then consists of 

k nodes  
– Between all these nodes exists an 

edge, because a variable and its 
negation cannot be both true  


