f. 4 TECHNISCHE
UNIVERSITAT
DARMSTADT

The classes P and NP

Decision problem

* Problem with only two possible answers ,yes” or ,no"

« Examples: Is n a prime number? Does a solution path in the Solitair-game exist?

Optimization problem

« given.: an implicitely or exolicitely described set Q of possible solutions
and an evaluation function f: Q -2 IR.
wanted: a solution x with f(x) = max{ g(x) | x €Q }

« Examples: Find a best possible fleet assignment.

Decision- and Optimization problems can be transformed to each other.

10.05.2012 | Komplexitat| 27

The classes P and NP

The class P: informal description

» set of those Decision problems, for that an algorithm exists, which solves the
problem and which consumes no more than polynomial runtime.

The class P: formal definition

 Let an encoding scheme E and a computational model M be given.

* Let 1 be a decision problem, and let each instance be encoded with the help of
the encoding scheme E.

* [1belongs to the class P (with regard to E and M), if there is an on M

implementable algorithm that solves all instances of [, with a worst-case
runtime function which is bounded by a polynomial.

10.05.2012 | Komplexitat| 28

The classes P and NP, examples

given: an arbitrary start position of nxn-solitair
wanted: yes/no with yes, if more than half of the stones have left the board.
- simple
-2 inP

given: an arbitrary start position of nxn-solitair
wanted: yes/no with yes, when tit is possible to play in such a way that exactly
one stone remains in the middle.

= intuitively not that easy
- in ,NP*

10.05.2012 | Komplexitat| 29

The classes P and NP

NP, definition 1:

A decision problem [1belongs to class NP, if it is valid:

* For each instance [/&[l1 with answer ,yes®, there is (at least) one object Q that
helps to verify the answer ,yes”.

* There exists an algorithm which accepts an instance /&/1and an additional

object Q as its input and verifies the answer ,yes® with runtime polynomial in
<[>+<Q)>.

* No statement how Q is computed. Q can be guessed by an oracle.
* The only statement for ,no" instances is that there has to be an algorithm which
correctly outputs ,yes® or ,no” in finite time.

10.05.2012 | Komplexitat | 30

The classes P and NP

NP, definition 2 (equivalent to previous one):
The class NP is defined via a so called non-deterministic RAM. Such a machine
possesses an additional instruction ,goto L1 or goto L2;".

A problem [1is in NP if there is a (non-deterministic) algorithm A (for the non-
deterministic RAM) such that for any instance I €1 with answer ,yes” there is a
computation-path of polynomial length in </>. A must halt on all instances.

10.05.2012 | Komplexitat | 31

), TECHNISCHE
H9/") UNIVERSITAT
%97 DARMSTADT

P, NP, PSPACE

" P: Class of problems which can be solved with he help of a deterministic RAM in
polynomial time

= NP: Class of problems which can be solved with the help of a non-deterministic
RAM in polynomial time.

= PSPACE : Class of problems which can be solved with the help of a
deterministic RAM with no more than polynomial space

P C NP C PSPACE C EXPTIME
= Only known: P # EXPTIME and

» EXPTIME = | JTIME(2"")

EXPTIME

PSPACE

ok

= Most researchers assume that the inclusions
are strict.

10.05.2012 | Komplexitat | 32

Typical examples from NP

*Definition: HAMPATH
— The Hamiltonian path problem
« given.:
— a directed graph
— two nodes st

« wanted.: does a path from s ti t
exist, such that all nodes are
visited once, but no edge twice?

* Algorithm for Hamiltonian path:
— Guess a permutation (s,v4,V,,...,V,.,t)

— Check, whether the permutation
describes a path

* |If yes, do accept
* If no, throw it away
*Therefore: HamPath € NP

& TECHNISCHE
)=\ UNIVERSITAT
97> DARMSTADT

{

10.05.2012 | Komplexitat | 33

Typical examples from NP

The SAT problem

= A boolean function f(x,,x,,..,X,) is satisfiable, if there is an assignment
for x4,X,,..,X,, such that f(x,,x,,..,x,) = 1
" (XvYy)a(zvxvy)a(xv z)is satisfiable, because
» the assignmentx=1,y=0,z=0
" delivers(1vO)AOvOv) a(lv1l)=1a1a1=1.

» Definition (SAT problem, the origin of all NPc problems)
— Given:
= Boolean Function ¢
— Wanted:
= |s there Xx4,X,,..,X, such that ¢(x4,X,,..,x,) = 1

= SAT is in NP. It is supposed that SAT is not in P.

10.05.2012 | Komplexitat | 34

74 TECHNISCHE
| ") UNIVERSITAT
%9/~ DARMSTADT

Classification of problems in P, NP, PSPACE

The reduction technique

Definition: Let P and Q be problems. Let L (or L) be the set of Instances
of the problem P (or Q) with answer ,yes”. Additionally, let 3 be an alphabet
for problem encoding and X* the set of all possible strings over the
alphabet. P is said to be polynomialy reducible to Q (P <, Q) if there is an in
polynomial time computable function f: 2 *—X* such that

x €lp = f(x) €L,

E.9.. P-instances Q-instances

\

no

10.05.2012 | Komplexitat | 35

NP-hardness

57 TECHNISCHE
UNIVERSITAT

“ 3 DARMSTADT

e Definition:

— A problem S is called NP-hard if:

« every problem from NP can be
reduced to S with the help of a
polynomial time reduction, i.e.

forallLENP: L=<, S
 Theorem
— if any NP-hard problem is in P, it
will P=NP
* Proof

—IfSe P and foraIIL:LspS
> LeP.

10.05.2012 | Komplexitat | 36

f. 4 TECHNISCHE

NP-completeness L /") UNIVERSITAT
%9/~ DARMSTADT
 Definition:
— A problem S is NP-complete if:
«SENP
« S is NP-hard
NP-complete

. Corollaw: prob|em

— If any NP-complete problem is in
P, it will hold P=NP

e Proof:

— Follows from NP-hardness of an
NP-complete problem.

10.05.2012 | Komplexitat | 37

The 3-SAT-problem and the Clique-problem

« 3-SAT:
— Given:
» A boolean formula in 3-CNF
— Wanted:
* A satisfying assignment

* Definition k-clique
— An undirected graph Graph G=(V,E)
contains a k-clique,
« If it contains k nodes , such that

« Each of the k nodes is connected
with each other one in G

«CLIQUE:
— Given:
* An undirected graph G
A natural number k
— Wanted:
» Does G contain a clique of size k?

¢=($1V$1V$2)A
(ZTT VI3 VI3) A
(33_1\/272\/332)

=4

10.05.2012 | Komplexitat | 38

3-SAT can be reduced to clique

« Theorem: 3-SAT < CLIQUE

3-SAT = Clique

kann reduziert
werden auf

3-5AT Clique

ist nicht
schwerer als

10.05.2012 | Komplexitat | 39

3-SAT laft sich auf Clique reduzieren

 Theorem: 3-SAT =<, , CLIQUE
* Proof

— Construct a reduction function f as
follows :

— f(¢) = <G,k>
— k = number of clauses
— For each clause C in ¢, 3 nodes are

created, assigned with the names of
the literals of that clause

— Add an edge between a pair of nodes
if and only if
* The two nodes do not belong to
the same clause and

* The two nodes do not correspond
to the same variable, once
negated and once not.

YV=(x1VZ1VZ)A(ZT1 VI3 VTZ3) A (TT V2V x23)

10.05.2012 | Komplexitat | 40

ANISCHE
VERSITAT
MSTADT

O, ®
O,)
O, O,

Y= (1 V1 VZ)A(ZIVIT2VT2) A (ZTTV z2 V 2)

10.05.2012 | Komplexitat | 41

ANISCHE
VERSITAT
MSTADT

V= (1 Va1 V) AN(ZL VT3 VZT2) A (T1 VT2V x3)

10.05.2012 | Komplexitat | 45

575 TECHNISCHE
7=\ UNIVERSITAT

P~ DARMSTADT

V=(x1 V1 V) AN(ZT1 VT2 VT2) A (T1 VX2V x3)
0 0 1 1 0 0 1 1 1

10.05.2012 | Komplexitat | 46

Correctness

TECHNISCHE
UNIVERSITAT
DARMSTADT

* The reduction function is correct:
e Claim;

— There is a true assignment of
variables in ¢ if and only if there 1s a
k-clique in G

* 1. case: a true assignment exists in ¢

— Then, this assignment forces at least
one literal to true, in each clause

— Choose such a literal from the node
set for all clauses

— The chosen node set then consists of
k nodes

— Between all these nodes exists an
edge, because a variable and its
negation cannot be both true

» 2. case: a k-clique exists in G
— Each node of the clique belongs to
another clause
— Set the corresponding literals to true 1
— Determine the corresponding
variables

— No contradiction occurs, because
there is no edge between any literal

and its negation
* runtime:

— Construction of the graph and the
edges consume no more than
quadratic time.

10.05.2012 | Komplexitat | 47

