

Decision problem

- Problem with only two possible answers "yes" or "no"
- Examples: Is n a prime number? Does a solution path in the Solitair-game exist?

#### **Optimization problem**

 given.: an implicitely or exolicitely described set Ω of possible solutions and an evaluation function f : Ω → IR. wanted: a solution x with f(x) = max{ g(x) | x ∈Ω }

• Examples: Find a best possible fleet assignment.

Decision- and Optimization problems can be transformed to each other.



#### The class *P*: informal description

• set of those Decision problems, for that an algorithm exists, which solves the problem and which consumes no more than polynomial runtime.

#### The class P: formal definition

- Let an encoding scheme *E* and a computational model *M* be given.
- Let Π be a decision problem, and let each instance be encoded with the help of the encoding scheme *E*.
- Π belongs to the class P (with regard to E and M), if there is an on M implementable algorithm that solves all instances of Π, with a worst-case runtime function which is bounded by a polynomial.

# The classes P and NP, examples







given: an arbitrary start position of *n*×*n*-solitair

wanted: yes/no with yes, if more than half of the stones have left the board.

 $\rightarrow$  simple

 $\rightarrow$  in P

given: an arbitrary start position of *n×n*-solitair

wanted: yes/no with yes, when tit is possible to play in such a way that exactly one stone remains in the middle.

- $\rightarrow$  intuitively not that easy
- $\rightarrow$  in "NP"





### NP, definition 1:

A decision problem  $\Pi$  belongs to class *NP*, if it is valid:

- For each instance *I*∈*Π* with answer "yes", there is (at least) one object Q that helps to verify the answer "yes".
- There exists an algorithm which accepts an instance *I ∈Π* and an additional object Q as its input and verifies the answer "yes" with runtime polynomial in </l>
   </l>
- No statement how Q is computed. Q can be guessed by an oracle.
- The only statement for "no" instances is that there has to be an algorithm which correctly outputs "yes" or "no" in finite time.



### NP, definition 2 (equivalent to previous one):

The class *NP* is defined via a so called non-deterministic RAM. Such a machine possesses an additional instruction "goto L1 or goto L2;".

A problem  $\Pi$  is in *NP* if there is a (non-deterministic) algorithm *A* (for the non-deterministic RAM) such that for any instance  $I \in \Pi$  with answer "yes" there is a computation-path of polynomial length in </ > A must halt on all instances.

# P, NP, PSPACE



- P: Class of problems which can be solved with he help of a deterministic RAM in polynomial time
- NP: Class of problems which can be solved with the help of a non-deterministic RAM in polynomial time.
- PSPACE : Class of problems which can be solved with the help of a deterministic RAM with no more than polynomial space

# $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXPTIME}$

- Only known: P ≠ EXPTIME and
- EXPTIME =  $\bigcup_k \mathbf{TIME}(2^{n^k})$
- Most researchers assume that the inclusions are strict.



## **Typical examples from NP**

#### •Definition: HAMPATH

- The Hamiltonian path problem
  - given.:
    - a directed graph
    - two nodes s,t
  - wanted.: does a path from s ti t exist, such that all nodes are visited once, but no edge twice?

#### •Algorithm for Hamiltonian path:

- Guess a permutation  $(s,v_1,v_2,...,v_{n-2},t)$
- Check, whether the permutation describes a path
  - If yes, do accept
  - If no, throw it away
- •Therefore: HamPath  $\in$  NP



## **Typical examples from NP**



### The SAT problem

- A boolean function f(x<sub>1</sub>,x<sub>2</sub>,..,x<sub>n</sub>) is satisfiable, if there is an assignment for x<sub>1</sub>,x<sub>2</sub>,..,x<sub>n</sub> such that f(x<sub>1</sub>,x<sub>2</sub>,..,x<sub>n</sub>) = 1
  - $(x \lor y) \land (z \lor \neg x \lor \neg y) \land (x \lor \neg z)$  is satisfiable, because
    - the assignment x = 1, y = 0, z = 0
  - delivers  $(1 \lor 0) \land (0 \lor 0 \lor 1) \land (1 \lor 1) = 1 \land 1 \land 1 = 1$ .
- Definition (SAT problem, the origin of all NPc problems)
  - Given:
    - Boolean Function  $\boldsymbol{\varphi}$
  - Wanted:
    - Is there  $x_1, x_2, ..., x_n$  such that  $\phi(x_1, x_2, ..., x_n) = 1$
- SAT is in NP. It is supposed that SAT is not in P.

## **Classification of problems in P, NP, PSPACE**



#### The reduction technique

**Definition:** Let *P* and *Q* be problems. Let  $L_P$  (or  $L_Q$ ) be the set of Instances of the problem *P* (or *Q*) with answer "yes". Additionally, let  $\Sigma$  be an alphabet for problem encoding and  $\Sigma^*$  the set of all possible strings over the alphabet. *P* is said to be polynomially reducible to Q ( $P \leq_p Q$ ) if there is an in polynomial time computable function  $f: \Sigma^* \rightarrow \Sigma^*$  such that



$$x \in L_P \Leftrightarrow f(x) \in L_Q$$

### **NP-hardness**



### • Definition:

- A problem S is called **NP-hard** if:
  - every problem from NP can be reduced to S with the help of a polynomial time reduction, i.e.
  - for all  $L \in NP$ :  $L \leq_p S$
- Theorem
  - if any NP-hard problem is in P, it will P=NP
- Proof
  - If S ∈ P and for all L: L ≤  $_{p}$  S → L ∈ P.



## **NP-completeness**

TECHNISCHE UNIVERSITÄT DARMSTADT

- Definition:
  - A problem S is **NP-complete** if:
    - $\bullet \; S \in \mathsf{NP}$
    - S is NP-hard
- Corollary:
  - If any NP-complete problem is in P, it will hold P=NP
- Proof:
  - Follows from NP-hardness of an NP-complete problem.



## The 3-SAT-problem and the Clique-problem



- 3-SAT:
  - Given:
    - A boolean formula in 3-CNF
  - Wanted:
    - A satisfying assignment
- Definition k-clique
  - An undirected graph Graph G=(V,E) contains a k-clique,
    - If it contains k nodes , such that
    - Each of the k nodes is connected with each other one in G
- CLIQUE:
  - Given:
    - An undirected graph G
    - A natural number k
  - Wanted:
    - Does G contain a clique of size k?





## **3-SAT** can be reduced to clique





### 3-SAT läßt sich auf Clique reduzieren



- Theorem: 3-SAT ≤<sub>m,p</sub> CLIQUE
- Proof
  - Construct a reduction function f as follows :
  - $f(\phi) = \langle G, k \rangle$
  - k = number of clauses
  - For each clause C in  $\phi$ , 3 nodes are created, assigned with the names of the literals of that clause
  - Add an edge between a pair of nodes if and only if
    - The two nodes do not belong to the same clause and
    - The two nodes do not correspond to the same variable, once negated and once not.



$$\psi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$





$$\psi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$



### Correctness



- The reduction function is correct:
- Claim;
  - There is a true assignment of variables in φ if and only if there is a k-clique in G
- 1. case: a true assignment exists in  $\boldsymbol{\varphi}$ 
  - Then, this assignment forces at least one literal to true, in each clause
  - Choose such a literal from the node set for all clauses
  - The chosen node set then consists of k nodes
  - Between all these nodes exists an edge, because a variable and its negation cannot be both true

- 2. case: a k-clique exists in G
  - Each node of the clique belongs to another clause
  - Set the corresponding literals to true 1
  - Determine the corresponding variables
  - No contradiction occurs, because there is no edge between any literal and its negation
- runtime:
  - Construction of the graph and the edges consume no more than quadratic time.