
10.05.2012 | Komplexität| 27

The classes P and NP

Decision problem

•  Problem with only two possible answers „yes“ or „no“

•  Examples: Is n a prime number? Does a solution path in the Solitair-game exist?

Optimization problem

•  given.: an implicitely or exolicitely described set Ω of possible solutions
 and an evaluation function f : Ω à IR.
 wanted: a solution x with f(x) = max{ g(x) | x ∈Ω }

•  Examples: Find a best possible fleet assignment.

Decision- and Optimization problems can be transformed to each other.

10.05.2012 | Komplexität| 28

The classes P and NP

The class P: informal description

•  set of those Decision problems, for that an algorithm exists, which solves the
 problem and which consumes no more than polynomial runtime.

The class P: formal definition

•  Let an encoding scheme E and a computational model M be given.
•  Let Π be a decision problem, and let each instance be encoded with the help of
 the encoding scheme E.
•  Π belongs to the class P (with regard to E and M), if there is an on M
 implementable algorithm that solves all instances of Π , with a worst-case
 runtime function which is bounded by a polynomial.

10.05.2012 | Komplexität| 29

The classes P and NP, examples

given: an arbitrary start position of n×n-solitair
wanted: yes/no with yes, if more than half of the stones have left the board.
 à simple
 à in P

given: an arbitrary start position of n×n-solitair
wanted: yes/no with yes, when tit is possible to play in such a way that exactly
one stone remains in the middle.
 à intuitively not that easy
 à in „NP“

10.05.2012 | Komplexität | 30

The classes P and NP

NP, definition 1:
A decision problem Π belongs to class NP, if it is valid:
•  For each instance I∈Π with answer „yes“, there is (at least) one object Q that
 helps to verify the answer „yes“.
•  There exists an algorithm which accepts an instance I∈Π and an additional
 object Q as its input and verifies the answer „yes“ with runtime polynomial in
 <I>+<Q>.

•  No statement how Q is computed. Q can be guessed by an oracle.
•  The only statement for „no“ instances is that there has to be an algorithm which
correctly outputs „yes“ or „no“ in finite time.

10.05.2012 | Komplexität | 31

The classes P and NP

NP, definition 2 (equivalent to previous one):
The class NP is defined via a so called non-deterministic RAM. Such a machine
possesses an additional instruction „goto L1 or goto L2;“.

A problem Π is in NP if there is a (non-deterministic) algorithm A (for the non-
deterministic RAM) such that for any instance I∈Π with answer „yes“ there is a
computation-path of polynomial length in <I>. A must halt on all instances.

10.05.2012 | Komplexität | 32

P, NP, PSPACE

§  P: Class of problems which can be solved with he help of a deterministic RAM in
 polynomial time

§  NP: Class of problems which can be solved with the help of a non-deterministic
 RAM in polynomial time.

§  PSPACE : Class of problems which can be solved with the help of a
 deterministic RAM with no more than polynomial space

§  Only known: P ≠ EXPTIME and

§  EXPTIME =

§  Most researchers assume that the inclusions
 are strict.

.

10.05.2012 | Komplexität | 33

Typical examples from NP

• Definition: HAMPATH
–  The Hamiltonian path problem

•  given.:
–  a directed graph
–  two nodes s,t

•  wanted.: does a path from s ti t
exist, such that all nodes are
visited once, but no edge twice?

• Algorithm for Hamiltonian path:
–  Guess a permutation (s,v1,v2,...,vn-2,t)
–  Check, whether the permutation

describes a path
•  If yes, do accept
•  If no, throw it away

• Therefore: HamPath ∈ NP

10.05.2012 | Komplexität | 34

The SAT problem

§ A boolean function f(x1,x2,..,xn) is satisfiable, if there is an assignment
for x1,x2,..,xn such that f(x1,x2,..,xn) = 1

§  (x ∨ y) ∧ (z ∨ ¬x ∨ ¬y) ∧ (x ∨ ¬z) is satisfiable, because
§  the assignment x = 1, y = 0, z = 0

§  delivers (1 ∨ 0) ∧ (0 ∨ 0 ∨ 1) ∧ (1 ∨ 1) = 1 ∧ 1 ∧ 1 = 1.

§ Definition (SAT problem, the origin of all NPc problems)
– Given:

§  Boolean Function φ
– Wanted:

§  Is there x1,x2,..,xn such that φ(x1,x2,..,xn) = 1

§ SAT is in NP. It is supposed that SAT is not in P.

Typical examples from NP

10.05.2012 | Komplexität | 35

The reduction technique

Definition: Let P and Q be problems. Let LP (or LQ) be the set of Instances
of the problem P (or Q) with answer „yes“. Additionally, let ∑ be an alphabet
for problem encoding and ∑* the set of all possible strings over the
alphabet. P is said to be polynomialy reducible to Q (P ≤p Q) if there is an in
polynomial time computable function f: ∑*→∑* such that

x ∈ LP ⇔ f(x) ∈ LQ

E.g.: P-instances Q-instances

yes

no no

yes

Classification of problems in P, NP, PSPACE

10.05.2012 | Komplexität | 36

NP-hardness

•  Definition:
– A problem S is called NP-hard if:

•  every problem from NP can be
reduced to S with the help of a
polynomial time reduction, i.e.

•  for all L ∈NP: L ≤p S
•  Theorem

–  if any NP-hard problem is in P, it
will P=NP

•  Proof
–  If S ∈ P and for all L: L ≤ p S
à L ∈ P.

-hard
problem

10.05.2012 | Komplexität | 37

NP-completeness

•  Definition:
– A problem S is NP-complete if:

• S ∈ NP
• S is NP-hard

•  Corollary:
–  If any NP-complete problem is in

P, it will hold P=NP
•  Proof:

– Follows from NP-hardness of an
NP-complete problem.

NP-complete
problem

10.05.2012 | Komplexität | 38

The 3-SAT-problem and the Clique-problem

• 3-SAT:
–  Given:

•  A boolean formula in 3-CNF
–  Wanted:

•  A satisfying assignment

• Definition k-clique
–  An undirected graph Graph G=(V,E)

contains a k-clique,
•  If it contains k nodes , such that
•  Each of the k nodes is connected

with each other one in G
• CLIQUE:

–  Given:
•  An undirected graph G
•  A natural number k

–  Wanted:
•  Does G contain a clique of size k?

k=4

10.05.2012 | Komplexität | 39

3-SAT can be reduced to clique

•  Theorem: 3-SAT ≤p CLIQUE

k=4

10.05.2012 | Komplexität | 40

3-SAT läßt sich auf Clique reduzieren

•  Theorem: 3-SAT ≤m,p CLIQUE
•  Proof

–  Construct a reduction function f as
follows :

–  f(φ) = <G,k>
–  k = number of clauses
–  For each clause C in φ, 3 nodes are

created, assigned with the names of
the literals of that clause

–  Add an edge between a pair of nodes
if and only if

•  The two nodes do not belong to
the same clause and

•  The two nodes do not correspond
to the same variable, once
negated and once not.

10.05.2012 | Komplexität | 41

10.05.2012 | Komplexität | 45

10.05.2012 | Komplexität | 46

10.05.2012 | Komplexität | 47

Correctness

•  2. case: a k-clique exists in G
– Each node of the clique belongs to

another clause
–  Set the corresponding literals to true 1
– Determine the corresponding

variables
– No contradiction occurs, because

there is no edge between any literal
and its negation

•  runtime:
– Construction of the graph and the

edges consume no more than
quadratic time.

•  The reduction function is correct:
•  Claim;

– There is a true assignment of
variables in φ if and only if there is a
k-clique in G

•  1. case: a true assignment exists in φ
– Then, this assignment forces at least

one literal to true, in each clause
– Choose such a literal from the node

set for all clauses
– The chosen node set then consists of

k nodes
– Between all these nodes exists an

edge, because a variable and its
negation cannot be both true

