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Complexity Theory 

§  What is a Problem? 
 

–  Problem: binary relation between a set I of instances and a set S of 
possible solutions.  
 
Example Maxsum problem:  
  Input: Sequence a1,...,an of integer numbers. Let f(i,j) := ai+ai+1+...+aj, 

  for 1 ≤ i ≤ j ≤ n. 
 Searched: The maximum f(i,j). 

 The set of instances consists of all sequences with finite length that consist 
of integer numbers. The set of solutions is the set of integer numbers. With 
the help of the definition of f and by the demand for a maximum f(i,j), these 
integer-number sequences are related to maximum sums.  
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Complexity Theory 

§  What is a problem (2)? 
 

We distinguish between the abstract problem and the description of the 
problem and its instances. 

 
If you want to communicate a problem, you must encode it. 

 
Encoding of a problem and its instances, i.e. their descriptions:  

–  An alphabet is a set of symbols. They are not God-given, but we have to 
agree on them. E.g.: 
§  {A,..,Z,a,..,z,0,…,9} suffice for most of every-day correspondence  
§  Sound for linguistic communication 
§  {0,1} is especially well suited in order to describe problems for 

computers 
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Complexity Theory 

–  In order to describe a problem, we need an alphabet. Moreover, we have to define rules 
that describe the meaning of symbol/character combinations; so called encoding 
schemes.  

§  Integer numbers have a binary discription (i.e. bits). We write 

  therefore, the coding length <k> of an integer number is given by 
 

§  Rational numbers: Let r be a rational number. Then, there is an integer 
number p and a natural number q such that r = p/q.  

     <r> = <p> + <q> 
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Complexity Theory 

 
§  Vectors 
  
 for x = (x1,…,xn)∈      n it is 

 
 
§  Matrices 

 
 for A∈      mxn it is  

 
   

     

€ 

x = xi
i=1

n

∑
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A = aij
j=1

n

∑
i=1

m

∑

Input length: The number of bits, consumed in order to completely describe  
an instance I is called input length <I>.  
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Complexity Theory 

§  Solving a problem, i.e. assigning correct solutions to arbitrary instances 
of the problem, can be more or less difficult.   
–  E.g.: In a most complicated case a problem may be undecidable: 

 
§  given: Coding of an algorithm (= program) for a Random Access 

Machine (RAM, more or less a computer with unlimited memory 
capacities), as well as a w ∈ Σ 
Question: Does the program stop after finite time on input w? 
 

“not decidable” means: there is no algorithm which might be able to give 
the correct answer to all instances of the problem.  

 

In the following, all problems will be decidable. The only question will be 
how many resources in form of time or space are consumed. 
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Every day life problems 

§ What is more difficult? 

– Mental arithmetic 

– Crossword puzzle 

– Chess 

– Socoban 

– Solitair 

?? 
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Algorithms and compute model 

§  What is an algorithm? 

§  An algorithmus is an instruction sequence for solving a problem 
step by step. We say, an algorithm A solves a problem Π, if A finds 
a correct solution for arbitrary instances I∈Π of the problem within 
a finite number of steps. The instruction sequence must have 
constant encoding length. 
 

§  A step is an elementary operation. (??) An elementary operation of 
pie baking („oven on 180o“) differs from an elementary operation of 
car („tire pressure to 2.0 bar“). 

 
Obviously, the definition of an elementary operation depends on 

the machine that executes our algorithm A! 
 

 



→ Compute model, efficiency measure. 
 

  register machine (Random Access Machine RAM) 

fixed 
program input ∈ {0,1}* 

Output a ∈ {0,1}* 

       b           c (0) 
   instruction    accumu- 
    counter        lator 

c(1)     c(2)        ... 
 memory, infinite many cells 

Algorithms and compute model 

Typical instruction set:  
load, store, goto, branch on zero, 
add, subtract, and, or, bit-
complement 



Additional distinction: unit-cost vs. log-cost model 
 
Unit-cost model: every instruction of the RAM costs one time unit 
 
Typical instruction set:  
+, -, *, /, compare, delete, write and read of rational numbers, control flow with 
the help of if … else branches, loops  
Mostly, we will use this cost-model. 
 
Log-cost model: each instruction costs Θ(k) time, where k is the number of 
bits of the operands.  
 
Typical instruction set:  
load, store, goto, branch on zero, add, subtract, bitwise and, bitwise or, bit-
complement 
This model is more realistic and is relevant e.g. in optimization, e.g. when you 
analyze the so called ellipsoid method. 
 

Algorithms and compute model 



Efficiency measures (algorithm A): worst-case, average-case, best-case 
 
TA(x) = number of instruction, executed by A on input x. 
SA(x) = largest address in memory, used by A on input x. 
 
•  Worst Case runtime:       TA

wc (n) := max {TA(x) | <x> = n} 
 
•  Average Case runtime:   TA

ac (n) := ∑{x | <x> = n} px TA(x),  
 demands knowledge on probabilities or equal distribution is assumed 

 
•  Best Case runtime: TA

bc (n) := min {TA(x) | <x> = n} 
 

 (In our examples so far, it was TA
bc (n) ≈ TA

wc (n) .) 
 
•  Space requirement: SA

wc(n) := max {SA(x) | <x> = n} 

Algorithms and compute model 



25.04.12 |  Komplexität  |  21 
 

Algorithms and compute model 

§ Definition: (worst-case) complexity of an algorithmus 
– Let A be a deterministic (RAM-)algorithm, that stops on any input. 
– The runtime (time complexity) of A is a function f: N→N, 

§  f(n) being the maximum number of step of A, running on inputs of 
length n. 

§  Linear-time-algorithmus: f(n) ≤ c n for a constant c 
§  Polynomial-time-algorithmus: f(n) ≤ c nk for constants c and k 

(and n sufficiently large) 

§ Definition: Complexity of a problem 
– The time- (space-) complexity of a problem p is the runtime of the fastest 

(least space consuming) algorithm that solves Problem  
– A problem p is “solveble in polynomial time”, if there is an algorithm A, a 

polynomial Π and an n0 ∈ℕ, such thatz for all n > n0 is valid : f(n) <= p(n) 



Example: Adding 1 in binary system 
    Input:    binary representation xn-1 ... x0 of x 
    Output:  binary representation of x + 1 

 
Algorithm: 

 if  xn-1 ... x0 = (1 ... 1), 
         return  yn ... y0 = (1 0 ... 0), 
 else search for critical position, i.e. the smallest  i with xi = 0. 
        return (xn-1 ... xi+1 1 0 ... 0). 

 
Runtime:  # manipulated bits 

 worst case : n + 1  (at input 1 ... 1) 
 best case   :       1  (e.g. at input 1 ... 10) 

Algorithms and compute model 



Average Case: 
 
1 Operations with probability            ½ 
2 Operations with probability            ¼ 
... 
n Operations with probability           (1/2)n 

 
1*1/2 + 2*1/4+3*1/8+... = 

   
•  Average case near best case! 
 
• As we,,. Examples exist, where average case is far away from  worst case 
and best case 

Algorithms and compute model 
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§  Example, showing the dependencies of runtime and input length: 
 

–  Def. Fibonacci-numbers: F0=0, F1=1, Fn=Fn-1+Fn-2 

–  Very slow algorithm: 
 fib(n) 
    if n <= 1 return Fn 

         else        return fib(n-1)+fib(n-2)  
 
Runtime: O(2^n). However,  n is index in Fibonacci-sequence, and ist 
encoding length is logarithmic in n. Thus, let  k = <n>. Then the runtime in k is 
O((2^(2^k)) 

–  Slow algorithm: 
 f0=0; f1=1 
 for i = 2 to n do 
     tmp=f1; 
     f1=f1+f0; 
     f0=tmp; 
 if n=0, return f0 , else return f1 

Algorithms and compute model 
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–  Def. Fibonacci-numbers: F0=0, F1=1, Fn=Fn-1+Fn-2 
 
fast algorithm: 

  
 inspect 

Algorithms and compute model 
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Obviiously, An
1,2 is the n-th Fib-number.  However: so what?  
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–  Computation of An 

–  Let us inspect the binary representation of n: 

–  E.g. m = 13 = 11012. Build  A, A4, A8 and build   A*A4*A8 = A1+4+8  

     It is 
 
–  Effort for exponentiation: O(k) 

Effort for An : O(k)  

Algorithms and compute model 
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In the Unit-cost Model!! 


