
25.04.12 | Komplexität | 11

Complexity Theory

§  What is a Problem?

–  Problem: binary relation between a set I of instances and a set S of
possible solutions.

Example Maxsum problem:
 Input: Sequence a1,...,an of integer numbers. Let f(i,j) := ai+ai+1+...+aj,

 for 1 ≤ i ≤ j ≤ n.
 Searched: The maximum f(i,j).

 The set of instances consists of all sequences with finite length that consist
of integer numbers. The set of solutions is the set of integer numbers. With
the help of the definition of f and by the demand for a maximum f(i,j), these
integer-number sequences are related to maximum sums.

25.04.12 | Komplexität | 12

Complexity Theory

§  What is a problem (2)?

We distinguish between the abstract problem and the description of the
problem and its instances.

If you want to communicate a problem, you must encode it.

Encoding of a problem and its instances, i.e. their descriptions:

–  An alphabet is a set of symbols. They are not God-given, but we have to
agree on them. E.g.:
§  {A,..,Z,a,..,z,0,…,9} suffice for most of every-day correspondence
§  Sound for linguistic communication
§  {0,1} is especially well suited in order to describe problems for

computers

25.04.12 | Komplexität | 13

Complexity Theory

–  In order to describe a problem, we need an alphabet. Moreover, we have to define rules
that describe the meaning of symbol/character combinations; so called encoding
schemes.

§  Integer numbers have a binary discription (i.e. bits). We write

 therefore, the coding length <k> of an integer number is given by

§  Rational numbers: Let r be a rational number. Then, there is an integer
number p and a natural number q such that r = p/q.

 <r> = <p> + <q>

⎣ ⎦)(log}1,0{,2 2
0

nkandxxn i

k

i

i
i =∈⋅±= ∑

=

⎣ ⎦ ⎣ ⎦ 2log11)(log 22 +=++= nnk

25.04.12 | Komplexität | 14

Complexity Theory

§  Vectors

 for x = (x1,…,xn)∈ n it is

§  Matrices

 for A∈ mxn it is

€

x = xi
i=1

n

∑

€

A = aij
j=1

n

∑
i=1

m

∑

Input length: The number of bits, consumed in order to completely describe
an instance I is called input length <I>.

25.04.12 | Komplexität | 15

Complexity Theory

§  Solving a problem, i.e. assigning correct solutions to arbitrary instances
of the problem, can be more or less difficult.
–  E.g.: In a most complicated case a problem may be undecidable:

§  given: Coding of an algorithm (= program) for a Random Access

Machine (RAM, more or less a computer with unlimited memory
capacities), as well as a w ∈ Σ
Question: Does the program stop after finite time on input w?

“not decidable” means: there is no algorithm which might be able to give
the correct answer to all instances of the problem.

In the following, all problems will be decidable. The only question will be
how many resources in form of time or space are consumed.

25.04.12 | Komplexität | 16

Every day life problems

§ What is more difficult?

– Mental arithmetic

– Crossword puzzle

– Chess

– Socoban

– Solitair

??

25.04.12 | Komplexität | 17

Algorithms and compute model

§  What is an algorithm?

§  An algorithmus is an instruction sequence for solving a problem
step by step. We say, an algorithm A solves a problem Π, if A finds
a correct solution for arbitrary instances I∈Π of the problem within
a finite number of steps. The instruction sequence must have
constant encoding length.

§  A step is an elementary operation. (??) An elementary operation of
pie baking („oven on 180o“) differs from an elementary operation of
car („tire pressure to 2.0 bar“).

Obviously, the definition of an elementary operation depends on

the machine that executes our algorithm A!

→ Compute model, efficiency measure.

 register machine (Random Access Machine RAM)

fixed
program input ∈ {0,1}*

Output a ∈ {0,1}*

 b c (0)
 instruction accumu-
 counter lator

c(1) c(2) ...
 memory, infinite many cells

Algorithms and compute model

Typical instruction set:
load, store, goto, branch on zero,
add, subtract, and, or, bit-
complement

Additional distinction: unit-cost vs. log-cost model

Unit-cost model: every instruction of the RAM costs one time unit

Typical instruction set:
+, -, *, /, compare, delete, write and read of rational numbers, control flow with
the help of if … else branches, loops
Mostly, we will use this cost-model.

Log-cost model: each instruction costs Θ(k) time, where k is the number of
bits of the operands.

Typical instruction set:
load, store, goto, branch on zero, add, subtract, bitwise and, bitwise or, bit-
complement
This model is more realistic and is relevant e.g. in optimization, e.g. when you
analyze the so called ellipsoid method.

Algorithms and compute model

Efficiency measures (algorithm A): worst-case, average-case, best-case

TA(x) = number of instruction, executed by A on input x.
SA(x) = largest address in memory, used by A on input x.

•  Worst Case runtime: TA

wc (n) := max {TA(x) | <x> = n}

•  Average Case runtime: TA

ac (n) := ∑{x | <x> = n} px TA(x),
 demands knowledge on probabilities or equal distribution is assumed

•  Best Case runtime: TA

bc (n) := min {TA(x) | <x> = n}

 (In our examples so far, it was TA
bc (n) ≈ TA

wc (n) .)

•  Space requirement: SA

wc(n) := max {SA(x) | <x> = n}

Algorithms and compute model

25.04.12 | Komplexität | 21

Algorithms and compute model

§ Definition: (worst-case) complexity of an algorithmus
– Let A be a deterministic (RAM-)algorithm, that stops on any input.
– The runtime (time complexity) of A is a function f: N→N,

§  f(n) being the maximum number of step of A, running on inputs of
length n.

§  Linear-time-algorithmus: f(n) ≤ c n for a constant c
§  Polynomial-time-algorithmus: f(n) ≤ c nk for constants c and k

(and n sufficiently large)

§ Definition: Complexity of a problem
– The time- (space-) complexity of a problem p is the runtime of the fastest

(least space consuming) algorithm that solves Problem
– A problem p is “solveble in polynomial time”, if there is an algorithm A, a

polynomial Π and an n0 ∈ℕ, such thatz for all n > n0 is valid : f(n) <= p(n)

Example: Adding 1 in binary system
 Input: binary representation xn-1 ... x0 of x
 Output: binary representation of x + 1

Algorithm:

 if xn-1 ... x0 = (1 ... 1),
 return yn ... y0 = (1 0 ... 0),
 else search for critical position, i.e. the smallest i with xi = 0.
 return (xn-1 ... xi+1 1 0 ... 0).

Runtime: # manipulated bits

 worst case : n + 1 (at input 1 ... 1)
 best case : 1 (e.g. at input 1 ... 10)

Algorithms and compute model

Average Case:

1 Operations with probability ½
2 Operations with probability ¼
...
n Operations with probability (1/2)n

1*1/2 + 2*1/4+3*1/8+... =

•  Average case near best case!

• As we,,. Examples exist, where average case is far away from worst case
and best case

Algorithms and compute model

€

1
2i+1

(i +1) ≤
i=0

n−1

∑ 1
2i+1

(i +1) = 2
i=0

∞

∑

25.04.12 | Komplexität| 24

§  Example, showing the dependencies of runtime and input length:

–  Def. Fibonacci-numbers: F0=0, F1=1, Fn=Fn-1+Fn-2

–  Very slow algorithm:
 fib(n)
 if n <= 1 return Fn

 else return fib(n-1)+fib(n-2)

Runtime: O(2^n). However, n is index in Fibonacci-sequence, and ist
encoding length is logarithmic in n. Thus, let k = <n>. Then the runtime in k is
O((2^(2^k))

–  Slow algorithm:
 f0=0; f1=1
 for i = 2 to n do
 tmp=f1;
 f1=f1+f0;
 f0=tmp;
 if n=0, return f0 , else return f1

Algorithms and compute model

25.04.12 | Komplexität| 25

–  Def. Fibonacci-numbers: F0=0, F1=1, Fn=Fn-1+Fn-2

fast algorithm:

 inspect

Algorithms and compute model

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

+

−−−

−

−−

−

−−

−

1

1

121

1

21

1

12

232

01

121

21

1

01
11

and ,,

 as wellas
01
11

nn

nn

nnn

nnn

nn

nn

nn

nn

ff
ff

fff
fff

ff
ff

AF

ff
ff

A
ff
ff

A

ff
ff

FA

Obviiously, An
1,2 is the n-th Fib-number. However: so what?

25.04.12 | Komplexität| 26

–  Computation of An

–  Let us inspect the binary representation of n:

–  E.g. m = 13 = 11012. Build A, A4, A8 and build A*A4*A8 = A1+4+8

 It is

–  Effort for exponentiation: O(k)

Effort for An : O(k)

Algorithms and compute model

⎣ ⎦

∏∏

∑

⎭
⎬
⎫

⎩
⎨
⎧

≤≤
==

⋅∑ ⋅

=

===

=∈⋅=

=

ki
x

k

i

xxn

i

k

i

i
i

i

ii
i

k

i

i
i

AAAA

nkxxn

0
1

2

0

22

2
0

0

 thereforeand)(log and }1,0{,2

……

squaringtimeskO

AAA
timeskO

i

:)(

22222)2())(()(
)(

−

==
−

In the Unit-cost Model!!

