
Orders of magnitude („Big-O Notation“)

)}()(:,,0::{:)(

.:

000

0

ngcnfnnthatsuchINncIRINfgO

IRINgLet

denotes the set of functions f: IN  IN, for that two positive constants c ∈ IR≥0 and n0

∈IN exist, such that for all n ≥ n0 it is: f(n) ≤ c*g(n)

Remark: This asymptotic notation disregards constants and terms of lower

(One says: if f∈O(g) then, asymptotically, f grows at most as fast as g.)

Claim: For a polynomial f(n) = amnm + ... + a0 of degree m with positive coefficient

am it is valid: f ∈O(nm) [Remark: more precisely O(n → nm)]

Proof: f(n) ≤ |am| nm + ... + |a1| n + |a0|

 ≤ (|am| + |am-1| / n +... + |a0| / n
m) ⋅ nm

 ≤ (|am| + |am-1| +... + |a0|) ⋅ n
m

 Now, c = |am| + |am-1| +... + |a0| and n0=1 implies the claim.

Further definitions: Again, let f, g: I IR≥0

- f ∈ (g) g ∈ (f)

 („asymptotically, f grows at least as fast as g“)

- f ∈ (g) f ∈ (g) und g ∈ (f)

 („asymptotically, f and g grow equally fast“)

-

 („f grows less fast than g“)

- F ∈ (g) g ∈o(f)

 („f grows faster than g“)

Instead of f ∈O(g), people sometimes write f = O(g). The same with

o, , , .

Orders of magnitude, further notations

o(g) : { f : IN IN : c 0 n0 IN, so dass n n0 : f (n) c g(n)}

Orders of magnitude, examples

• Let f(n) be the number of comparisons of a sequential search for the maximum of a

 number-sequence with n elements. Then f(n) ∈O(n), because running over the

 input once finfs the maximum number.

 Then again, every algorithm has at least to inspect each element of the input in

 order to find the maximum. Therefore, every algorithm for this problem has a

 running time of f(n) ∈ (n).

• Matrix Multiplication: Let A and B be quadratic n x n matrices. The entries cij

 of C = A⋅B result from cij = ∑n
k=1 aik ⋅bkj. Seemingly, n multiplications and n additions

 per entry. As n2 many entires of C have to be computed , the outcome of the total

 effort of the „ovbious“ algorithm is: n2(n+n-1) = 2n3 – n2 ∈ O(n3). Moreover, each

 algorithm for this purpose will consume (n2) operations.

 The fastest, currently known algorithm consumes O(n2.376) operations.

Orders of magnitude, examples

• n∈ o(n2), n2 ∈ O(n2), n2 ∈ o(n2)

• for i = 1 to n do for i = 1 to n do

 for j = 1 to n do for j = i+1 to n do

 perform an operation perform f(n) operations

 end do end do

 end do end do

 O(n2) operations O(n2⋅f(n)) operations

11.04.2012 | Komplexität | 6

Orders of magnitude, remarks

a) The relation o(...) is transitive

 f(n) = o(g(n) and g(n)=o(h(n)) ⇒ f(n) = o(h(n))

b) The relation o(...) can be used for classifiying various functions. E.g. it is

valid for 0 < ε < 1 < c:

1 = o(log log n) constant functions

log log n = o(log n) double logarithmic funktions

log n = o(nε) logarithmic funktions

nε = o(nc) roots

nc = o(nlog n) polynomials

nlog n = o(cn) subexponential functions

cn = o(nn) exponential functions

nn = o(ccn
) super exponential functions

Orders of magnitude, examples

log n n n log n n2 n3 2n

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

4 16 64 256 4096 65536

5 32 160 1024 32768 4294967296

The following table shows the growth of various functions :

16.04.2012 | Komplexität| 8

Orders of magnitude, computing rules

• For a constant c, it is c∈O(1)

• c⋅f(n)∈O(f(n)), clear with definition of O-notation

• O(f)+O(f)⊆O(f). Let g and h be functions from O(f). Then, there are cg, ch, ng

 and nh such that ... (exercise )

• O(O(f))=O(f) with def.

• O(f)⋅O(g)⊆O(f⋅g) (exercise)

• O(f+g)=O(max{f(n),g(n)}).

 Let h ∈ O(f+g). Then, there are positive constants c and n0, such that for all

 n≥n0 it is: h(n) ≤ c⋅(f+g)(n) ≤ c⋅2⋅max{f,g}(n). Thus, h(n) ∈ O(max{f,g}).

 The other direction, h ∈ O(max{f,g}). Thus, there are positive constants c and n0,

 such that for all n≥n0 it is valid: h(n) ≤c⋅max{f,g}(n) ≤ c⋅(f+g)(n),

 and thus h ∈ O(f+g).

Orders of magnitude, the O-notationen („Master Theorem“)

.)/for or /for standseither / where(

)()/()(

Let

.:)(let and constants1,1Let 00

bnbnbn

nfbnaTnT

IRINnTba

))(()(

 then, largely sufficientfor)()/(such that

10 with c a is thereif and),()(with0 if

)log()(

 then),()(if

)()(

 then),()(with 0 if

log

log

log

log

log

nfnT

nnfcbnfa

cnnf

nnnT

nnf

nnT

nOnf

a

a

a

a

a

b

b

b

b

b

Note:

There are

other than

these 3 cases!

Orders of magnitude, the O-notationen („Master Theorem“)

Examples:

 then is: a=9, b=3, f(n)=n, and thus nlogba = nlog39=n2

 Therefore, f(n)=O(nlog39-ε), and we close with case 1:

 T(n) = Θ(n2)

 then is: a=1, b=3/2, f(n)=1 and nlogba = nlog3/21=n0=1
 Case 2, because f(n) = Θ(nlogba)=Θ(1)

 also: T(n) = Θ(log n)

nnTnT)3/(9)(

1)3/2()(nTnT

