
Orders of magnitude („Big-O Notation“) 
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denotes the set of functions f: IN  IN, for that two positive constants c ∈ IR≥0 and n0 

∈IN exist, such that for all n ≥ n0 it is: f(n) ≤ c*g(n) 

 

Remark: This asymptotic notation disregards constants and terms of lower  

(One says: if f∈O(g) then, asymptotically, f grows at most as fast as g.) 

 

Claim: For a polynomial f(n) = amnm + ... + a0 of degree m with positive coefficient  

am it is valid: f ∈O(nm)  [Remark: more precisely O(n → nm)] 

 

Proof:        f(n)  ≤ |am| nm + ... + |a1| n + |a0| 

  ≤ (|am| + |am-1| / n +... +  |a0| / n
m) ⋅ nm  

  ≤ (|am| + |am-1| +... +  |a0|) ⋅ n
m  

     Now, c = |am| + |am-1| +... +  |a0| and n0=1 implies the claim.  

 



Further definitions: Again, let  f, g: I   IR≥0 

  
 

-  f ∈ (g)  g ∈ (f) 

   („asymptotically, f grows at least as fast as g“) 
 

-  f ∈ (g)  f ∈ (g) und  g ∈ (f) 

   („asymptotically, f and g grow equally fast“) 
 

-  

   („f grows less fast than g“) 

 
- F ∈ (g)  g ∈o(f) 

   („f grows faster than g“) 

 

Instead of f ∈O(g), people sometimes write f = O(g). The same with   

o, , , .     

 

Orders of magnitude, further notations 

o(g) : { f : IN IN : c 0 n0 IN, so dass n n0 : f (n) c g(n)}



Orders of magnitude, examples 

• Let f(n) be the number of comparisons of a sequential search for the maximum of a 

  number-sequence with n elements.  Then f(n) ∈O(n), because running over the  

  input once finfs the maximum number. 

 

  Then again, every algorithm has at least to inspect each element of the input  in  

  order to find the maximum. Therefore, every algorithm for this problem has a  

  running time of f(n) ∈  (n).  

 

• Matrix Multiplication: Let  A and B be quadratic n x n matrices. The entries  cij 

  of C = A⋅B result from cij = ∑n
k=1 aik ⋅bkj. Seemingly, n multiplications and n additions  

  per entry. As n2 many entires of C have to be computed , the outcome of the total  

  effort of the „ovbious“ algorithm is:  n2(n+n-1) = 2n3 – n2  ∈ O(n3). Moreover, each  

  algorithm for this purpose will consume   (n2) operations. 

 

  The fastest, currently known algorithm consumes  O(n2.376) operations. 



Orders of magnitude, examples 

• n∈ o(n2), n2 ∈ O(n2), n2 ∈ o(n2) 

 

 

 

• for i = 1 to n do    for i = 1 to n do 

       for j = 1 to n do        for j = i+1 to n do 

             perform an operation            perform f(n) operations 

       end do         end do 

  end do     end do 

 

   O(n2) operations     O(n2⋅f(n)) operations 
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Orders of magnitude, remarks 

a) The relation o(...) is transitive 

 

 f(n) = o(g(n) and g(n)=o(h(n))   ⇒    f(n) = o(h(n)) 

 

b) The relation o(...) can be used for classifiying various functions. E.g. it is 

valid for  0 < ε < 1 < c: 

1   = o(log log n) constant functions 

log log n  = o(log n) double logarithmic funktions 

log n   = o(nε)  logarithmic funktions 

nε   = o(nc)  roots 

nc   = o(nlog n) polynomials 

nlog n   = o(cn)  subexponential functions 

cn   = o(nn)  exponential functions  

nn   = o(ccn
)  super exponential functions 



Orders of magnitude, examples 

log n n n log n n2 n3 2n 

0 1 0 1 1 2 

1 2 2 4 8 4 

2 4 8 16 64 16 

3 8 24 64 512 256 

4 16 64 256 4096 65536 

5 32 160 1024 32768 4294967296 

The following table shows the growth of various functions : 
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Orders of magnitude, computing rules 

• For a constant c, it is  c∈O(1) 

• c⋅f(n)∈O(f(n)), clear with definition of O-notation 

• O(f)+O(f)⊆O(f). Let g and h be functions from O(f). Then, there are  cg, ch, ng 

  and nh such that   ... (exercise  )  

• O(O(f))=O(f) with def.  

• O(f)⋅O(g)⊆O(f⋅g)  (exercise) 

• O(f+g)=O(max{f(n),g(n)}).  

  Let h ∈ O(f+g). Then, there are positive constants  c and n0, such that for all  

  n≥n0 it is: h(n) ≤ c⋅(f+g)(n) ≤ c⋅2⋅max{f,g}(n).  Thus, h(n) ∈ O(max{f,g}). 

  

  The other direction, h ∈ O(max{f,g}). Thus, there are positive constants c and n0,  

  such that for all n≥n0 it is valid: h(n) ≤c⋅max{f,g}(n) ≤ c⋅(f+g)(n),  

  and thus h ∈ O(f+g). 

 



Orders of magnitude, the O-notationen („Master Theorem“) 
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Note:  

There are 

other than 

these 3 cases! 



Orders of magnitude, the O-notationen („Master Theorem“) 

Examples: 

   

   

  then is: a=9, b=3, f(n)=n, and thus  nlogba = nlog39=n2  

  Therefore, f(n)=O(nlog39-ε), and we close with case 1: 

           T(n) = Θ(n2) 

 

   

   

  then is: a=1, b=3/2, f(n)=1 and nlogba = nlog3/21=n0=1 
   Case 2, because f(n) = Θ(nlogba)=Θ(1) 

  also: T(n) = Θ(log n)  
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