
 11.04.2012 | Lorenz | ADM| 1

Algorithmic Discrete Mathematics

11.04.2012 | Komplexität| 2

Service team

 Lecture: PD Dr. Ulf Lorenz
Tuesday Email: lorenz@mathematik.tu-darmstadt.de
11:30 bis 15:10 Office 35, Dolivostr. 15

 Exercise chief Dipl. Math. David Meffert
instructor: Email:meffert@mathematik.tu-darmstadt.de

 Exercises:
 Thursday 14:25 to 16:05 every two weeks start 19.04.2012 S103/110

 Thursday 14:25 to 16:05 every two weeks start 19.04.2012 S103/113

 Thursday 16:15 to 17:55 every two weeks start 19.04.2012 S103/113

 Thursday 16:15 to 17:55 every two weeks start 19.04.2012 S103/164

 Thursday 16:15 to 17:55 every two weeks start 19.04.2012 S103/175

 Wednesday 8:00 to 9:40 every two weeks start 18.04.2012 S103/164

11.04.2012 | Komplexität| 3

Module description

 References:

– M. Aigner: Diskrete Mathematik, Vieweg

– T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to
Algorithms

– Lecture notes of 2010 (in german)

– Further material (partially in advance, in the web), simplifies taking notes,
cannot compensate for a teaching book!

Written exam: 60 minutes

 4,5 (5,0) ECTS, 2V + 1Ü

 General concepts: Growth of functions and asymptotic complexity.
Graph theory: Euler graphs, spanning trees, shortest paths, Travelling-
Salesman-Problem.
Search problems: Sorting, decision trees.
Coding/Cryptography: Huffman-encoding, RSA-algorithm.
Further topics (examples): Matchings in bipartite graphs, flow algorithmens.

• exercise groups: registration via TUCaN

 begin of exercises: Wednesday 18.4.2012

• exercises, procedure:

 release dates: Tuesday 19:00 (in the Web, deadline on exercise sheet)

 delivery dates: usually next Tuesday after the reading

• assessment: The grade of the written exam can be upgraded via active

 participation in exercises and with the help of solving ‚many‘ of the

 exercise items. Partially, the exam will contain multiple-choice items about

 the homework.

• Working in small groups is recommended

 (groups with up to 4 students are allowed to work together!)

Organisation

• 3 or 4 items per sheet. In irregular intervals:

 programing exercises with longer lasting handling time.

 Additionally: simplified items in the exercises

• If necessery, the exercises will deal more extensively with the lecture,

 otherwise small tasks in small groups.

 ! You can only learn by “do it yourself“,

 only “read + listen“ is not enough!

Organization

11.04.2012 | Komplexität| 6

Contents

 Introduction

 Complexity theory

– Data structures and encoding schemes

– Algorithms

– Asymptotic notation, upper and lower bounds

– Complexity classes P, NP; NP-complete problems

 Algorithms for graphs

– DFS algorithm

– Greedy-algorithms (e.g.: computing spanning trees)

– Dijkstra, Moore-Bellmann (shortest paths on graphs)

– Ford-Fulkerson (maximum flows in networks, matchings)

 Abstract data types (stack, queue, heap) and again DFS, BFS and Dijkstra

 Sorting on arrays

– Mergesort, Quicksort, Heapsort

– Divide-and-Conquer

– Lower complexity bounds for sorting by comparison

Algorithmic every day problems:

• How does a navigation system find “good“ connections?

• How can we find optimal paths for gas in a gas distribution system?

• How does e.g. Lufthansa optimize its aircraft assignments?

Introduction

Algorithm, informal explanation:

 A sequence of easy understandable actions to perform,

 on the right level of abstraction.

Introduction, “good” connections

Introduction, “good” connections

Introduction, “good” connections

• street map graph; problem: find shortest path between start and end points

• This graph might describe a gas network, as well; problem then e.g.: what is

 the best opportunity to distribute the gas to some consumers?

Introduction, “good” connections

• street map graph; problem: find shortest path between start and end points

• This graph might describe a gas network, as well; problem then e.g.: what is

 the best opportunity to distribute the gas to some consumers?

1

2
0,7

0,5 1

1

0,2

2
0,2

1

1,2 1

1

1

1,3

1,3

1

1

1

1

1,2
1

1,1

2

1

1,2 1,2

1
1 0,5

2
1

1

1,5

2

3
0,1

4
5

4

0,1

4
2

1

0,2

1,5

2

2

3,5

1,1
2

1,3

2

5

2
1,5

1

0,3

1,1

0,3 0,3

1,5

s

t

Optimization in airline industries

Fleet
Assignment

Aircraft
Rotation

Crew
Pairing

Crew
Rostering

Operation
Control

Network
Design

Market
Modeling

Revenue
Management

Fleet Assignment

PAD

HAM

FRA

JFK

BOS

LAX

LHR

Boeing 747

Boing 737

Airbus 310

Boeing 747
Airbus 310

Airbus 310

Canadair Jet

Assignment of aircraft types to so called legs

 Maximize the earnings

Restrictions:

 limited amount of aircrafts

 balanced flight plan

 lots of operative restrictions

Time-Space Network

PAD

MUC

FRA

leg (flight) A

flight event
ground edge

Weekly planning with up to 10.000 flight events, 10-23 aircraft types

xl,f

yv,v+

v v+

v-

Linear Program for Fleet Assignment

(xl,f = 1) (leg l is operated with fleet f)

yv,v+ : number of waiting aircrafts bewteen two flight events

 Mathematical Model, Linear Programm Optimization I - III

 Model size:

 |legs|*|fleets| integer variables, 2*|legs|*|fleets| constraints

 thus about 230,000 variables, 500,000 constraints

 solution times for gettimg exact solutions took too long at that time (ca. year 2k)

Results for Fleet Assignment, Heuristics

Verfahren HC SA MIP

-Lösungsqualität 98,5% 99,7% >99,9%

Parallel Simulated Annealing

processors processors processors processors processor

Important for practice is speed

11.04.2012 | Algorithm, Complexity| 19

First algorithmic example

 The max sum problem

Input: Sequence a1,...,an of integer numbers. Let f(i,j) := ai+ai+1+...+aj,
 for 1 ≤ i ≤ j ≤ n.
Desired: maximized f(i,j).

For an efficiency analysis, we only count at this place

– the number of used comparisons V(n) beteen numbers and

– the number of used arithmetic operations.

– The runtime is defined as T(n) = A(n) + V(n).

 In the following, 4 different algorithms are presented and analysed in
detail.

 Algorithm 1 (naive algorithm)

1. compute all f(i,j), one after the other

2. choose the one with largest f(i,j)

 Example: given. (3,-2,4,-5)

 f(1,1) = 3 f(1,2) = 3-2 f(1,3) = 3-2+4 f(1,4) = 3-2+4-5

 f(2,2) = -2 f(2,3) = -2+4 f(2,4) = -2+4-5

 f(3,3) = 4 f(3,4) = 4-5

 f(4,4) = -5

First algorithmic example

11.04.2012 | Algorithm, Complexity| 20

 Algorithm 1 (naive algorithm)

1. compute all f(i,j), // f(1,1), f(1,2), f(1,3)... f(1,n), f(2,1)...

2. choose the largest f(i,j)

 Analysis: We need j-i sumations in order to compute f(i,j).

 In order to determine the maximum of L numbers, L-1 comparisons are
needed. Here, it is L = ½ (n (n-1)) + n. (why?) Therefore,

First algorithmic example

A(n) (j i) k
0 k n i1 i ni j n1 i n

L
1

6
n3

1

6
n

V (n)
n

2

n

1
1 1 i

1

n
1

2
(n(n 1)) n 1

1

2
n2

1

2
n 1

T(n) V (n) A(n)
1

6
n3

1

2
n2

1

3
n 1

11.04.2012 | Algorithm, Complexity| 21

 Algorithm 2 (normal algorithm)
f(i,j) can be computed more efficiently: do not compute f(i,j+1) completely
new, but instead use that f(i,j+1) = f(i,j)+aj+1 and f(i,j) is already known.
We compute f(i,j) in the following order:

and thereafter compute the maximum. Now, V(n) is the same as in the
naive algorithm. However, we consume only one addition in order to
compute f(i,j), j > i:

),()(

),3()3,3()(

),2()3,2()2,2()(

),1()3,1()2,1()1,1()(

3

2

1

nnfa

nffa

nfffa

nffffa

n

1)()()(

2

1

2

1
)1()(

2

2

11

nnAnVnT

nnininA
n

i

n

i

First algorithmic example

11.04.2012 | Algorithm, Complexity| 22

 Algorithm 3 (Divide & Conquer algorithm)

In order to become better: do not compute all f(i,j) !

General methodology „Divide & Conquer“:

Partition the given problem into several subproblems of the same type
(„divide“), solve the subproblems (recursively) and construct a solution
of the original problem with the help of the two partial solutions
(„Conquer“).

In the following, we assume for simplicity that n is of the form
 n=2k for some natural number k.

First algorithmic example

11.04.2012 | Algorithm, Complexity| 23

 For1 ≤ a ≤ b ≤ n we define:

Then it is valid for σ(1,n):

Example:

First algorithmic example

(l,r) : (al ,...,ar) : max f (i, j),l i j r ,

s1 : max f (i,
n

2
), 1 i

n

2
,

s2 : max f (
n

2
1, j),

n

2
1 j n .

(1,n) : max (1,
n

2
), (

n

2
1,n),s1 s2 .

(-10,5,2,-7, 3,6,-9,11)

 σ(1,4)=7 σ(5,8)=11

 s1=0 s2=11

11.04.2012 | Algorithm, Complexity| 24

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=? s2=?

σ1 = ? σ2=?

11.04.2012 | Algorithm, Complexity| 25

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

11.04.2012 | Algorithm, Complexity| 26

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=? s2=?

σ1=? σ2=?

11.04.2012 | Algorithm, Complexity| 27

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

First algorithmic example

(-10,5, 2,-7)

s1=5 s2=2

σ1=? σ2=?

11.04.2012 | Algorithm, Complexity| 28

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=5 s2=2

σ1=? σ2=?

(-10, 5)

s 1 =? s 2 =?

σ1=? σ2=?

11.04.2012 | Algorithm, Complexity| 29

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

(-10,5, 2,-7)

s1=5 s2=2

σ1=? σ2=?

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

First algorithmic example

(-10, 5)

s1=-10 s2=5

σ1=? σ2=?

11.04.2012 | Algorithm, Complexity| 30

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=5 s2=2

σ1=? σ2=?

(-10, 5)

s1=-10 s2=5

σ1=? σ2=?

(-10)

11.04.2012 | Algorithm, Complexity| 31

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=5 s2=2

σ1=? σ2=?

(-10, 5)

s1=-10 s2=5

σ1=-10 σ2=?

(-10)

11.04.2012 | Algorithm, Complexity| 32

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=5 s2=2

σ1=? σ2=?

(-10, 5)

s1=-10 s2=5

σ1=-10 σ2=?

(-10) (5)

11.04.2012 | Algorithm, Complexity| 33

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=5 s2=2

σ1=? σ2=?

(-10, 5)

s1=-10 s2=5

σ1=-10 σ2=5

(-10) (5)

11.04.2012 | Algorithm, Complexity| 34

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=5 s2=2

σ1=5 σ2=?

(-10, 5)

s1=-10 s2=5

σ1=-10 σ2=5

(-10) (5)

11.04.2012 | Algorithm, Complexity| 35

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = ? σ2=?

(-10,5, 2,-7)

s1=5 s2=2

σ1=5 σ2=2

(-10, 5)

s1=-10 s2=5

σ1=-10 σ2=5

(-10) (5)

(2, -7)

s1=2 s2=-7

σ1=2 σ2=-7

(2) (-7)

11.04.2012 | Algorithm, Complexity| 36

 function σ(a1,...,an)
 if n=1, return an
 if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an).
 return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.

First algorithmic example

(-10,5,2,-7, 3,6,-9,11)

 s1=0 s2=11

σ1 = 7 σ2=11

(-10,5, 2,-7)

s1=5 s2=2

σ1=5 σ2=2

(3,6, -9,11)

s1=9 s2=2

σ1=9 σ2=11

(-10, 5)

s1=-10 s2=5

σ1=-10 σ2=5

(2, -7)

s1=2 s2=-7

σ1=2 σ2=-7

(3 , 6)

s 1 = 3 s 2 = 6

σ1=3 σ2=6

(- 9 , 11)

s1=-9 s2=11

σ1=-9 σ2=11

(-10) (5) (2) (-7) (3) (-9) (11) (6)

out
11

11.04.2012 | Algorithm, Complexity| 37

 Analysis:
 let T(n) be the number of operations (comparisons + additions),
 consumed by the D&C algorithm on inputs of length n.

 Then: T(1) = 0, and for n > 1: T(n)=2T(n/2)+2n-1

 Reasoning:

 In order to compute σ(a1,...,an/2), σ(an/2+1,...,an), our algorithm is called
twice for inputs of length n/2.

 In order to compute s1 and s2 we have to perform n/2-1 aditions and
comparisons twice.

 One further addition computes s1 + s2.

 Two further comparisons are consumed in order to determine the
maximum.

In total: 2(n/2 – 1 + n/2 -1) + 2 +1 = 2n - 1

In total: 2(n/2 – 1 + n/2 -1) + 2 +1 = 2n - 1

First algorithmic example

11.04.2012 | Algorithm, Complexity| 38

 Analysis:
Result: a so called recursive equation / recurrence for the running time
(for technical reasons we substitute n by 2k)

First algorithmic example

12)2(2)2(:1,0)1(11 kkk TTkforandT

(this is typical for recursive algorithms, especially for D&C)

Several replacements result in:

T(2k) 2T(2k 1) 2k 1 1

2(2T(2k 2) 2k 1) 2k 1 1

4T(2k 2) (2k 1 2) (2k 1 1)

8T(2k 3) (2k 1 4) (2k 1 2) (2k 1 1)

11.04.2012 | Algorithm, Complexity| 39

 Analysis:

First algorithmic example

12)2(2)2(:1,0)1(11 kkk TTkforandT

... and, as a consequence, the following conjecture:

T(2k) 2lT(2k l) 2k 1 2i 1

i 1

l

Such that for l=k it will be valid:

T(2k) 2kT(20) (2k 1 2i 1)
i 1

k

0 k 2k 1 2i 2k 2k (2k 1)
i 0

k 1

2n log2(n) n 1 Proof: Exercise

11.04.2012 | Algorithm, Complexity| 40

 Algorithm 4 (clever algorithmus)

 (scans over the input exactly once)

 Max := a1; Max* := Max;

 For l = 2,...,n

 Max* := max{Max* + al, al}

 Max := max{Max*,Max}

 Output: Max

 Correctness:

 Claim.: after the l-th loop execution, it is

 Max* max f (i,l),1 i l

Max (1,l) max f (i, j),1 i j l

Example:

(-10,5,2,-7,3,6,-9,11) Max*= -10, Max = -10

(-10,5,2,-7,3,6,-9,11) Max*= 5, Max = 5

(-10,5,2,-7,3,6,-9,11) Max*= 7, Max = 7

(-10,5,2,-7,3,6,-9,11) Max*= 0, Max = 7

(-10,5,2,-7,3,6,-9,11) Max*= 3, Max = 7

(-10,5,2,-7,3,6,-9,11) Max*= 9, Max = 9

(-10,5,2,-7,3,6,-9,11) Max*= 0, Max = 9

(-10,5,2,-7,3,6,-9,11) Max*= 11, Max = 11

First algorithmic example

11.04.2012 | Algorithm, Complexity| 41

Insertion, repetition: Induction proofs

Claim: A certain statement A(n) is valid for all

Proof: I.) proof of the „base clause“ !

 A(1) is true, is a correct statement

 II.) proof of the „induction step“!

 For all : if A(n-1) is true, then also A(n) is true

The claim follows from I.) and II.):

 A(1) is true, because of I.)

 => A(2) is true, because of II.)

 => A(3) is true, because of II.) => ... Etc.

First algorithmic example

n IN

n IN

11.04.2012 | Algorithm, Complexity| 42

 Analysis:

 Induction:

 l=2: after the first loop execution:

 Max* max a1 a2,a2 max f (1,2), f (2,2) ,

Max max a1 a2,a2,a1 (1,2)

l-1 l:
(Maxl-1 und Max*l-1 describe Max and Max* after the (l-2)-th execution of the loop)

Concerning the induction hypothesis, it is:

Max *l 1 max f (i,l 1),1 i l 1 ,

Maxl 1 (1,l 1)

First algorithmic example

11.04.2012 | Algorithm, Complexity| 43

 Analysis:

 this implies:

Thus, with Max =σ(1,n), the correct value is computed and

• A(n) = n-1

• V(n): two comparisons per loop execution, thus 2(n-1) comparisons in total

• T(n) = 3n-3

),1(

}1),({)}1,1({max

*,max

1),(max

}{}11)1,({max

,*max*

1

1

l

liwithlifl

MaxMaxMax

liwithlif

aliwithalif

aaMaxMax

IH

l

ll

IH

lll

First algorithmic example

11.04.2012 | Algorithm, Complexity| 44

n

naive

1/6 n3+1/2 n2+1/3 n-1

normal

n2 - 1

divide & conquer

2n log (n) - n + 1

clever

3n - 3

22 = 4

24 = 16

26 = 64

28 = 256

210 = 1024

215 = 32768

19

814

45759

2829055

179418599

> 5 ·1012

15

255

4095

65535

1048575

 109

13

113

705

3841

19457

950273

9

45

189

765

3069

98301

e.g.. clever needs for n = 1024 approx. As much time as divide & conquer for n = 256 or as normal for n = 64.

First algorithmic example

11.04.2012 | Algorithm, Complexity| 45

First algorithmic example

Questions:

 Is it really necessary to make such an effort for analyses? This is
already complicated and boring for small examples with three lines.

 Why did we count comparisons and additions? Could we also count
multiplications? Why did we deal with the addition in the same way as
with the comparison? Is that really the rigth way?

 Why do we use just the number of sequence items as an parameter of
analysis? Isn‘t the consequence that everybody counts whatever
he/she likes to count? Is it possible to reach better comparability?

 How do I know whether I have discovered a good algorithm?

11.04.2012 | Algorithm, Complexity| 46

