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Service team 

 Lecture:   PD Dr. Ulf Lorenz 
Tuesday   Email: lorenz@mathematik.tu-darmstadt.de 
11:30 bis 15:10   Office 35, Dolivostr. 15 

 

 Exercise chief Dipl. Math. David Meffert 
instructor:  Email:meffert@mathematik.tu-darmstadt.de 

 

 Exercises:    
    Thursday 14:25 to 16:05 every two weeks start 19.04.2012 S103/110 

     Thursday 14:25 to 16:05 every two weeks  start 19.04.2012 S103/113 

    Thursday 16:15 to 17:55 every two weeks  start 19.04.2012 S103/113 

    Thursday 16:15 to 17:55 every two weeks  start 19.04.2012 S103/164 

    Thursday 16:15 to 17:55 every two weeks  start 19.04.2012 S103/175 

    Wednesday 8:00 to 9:40 every two weeks  start 18.04.2012 S103/164 
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Module description 

 References:  

– M. Aigner: Diskrete Mathematik, Vieweg 

– T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to 
Algorithms 

– Lecture notes of 2010 (in german) 

– Further material (partially in advance, in the web), simplifies taking notes, 
cannot compensate for a teaching book! 

Written exam: 60 minutes 

 4,5 (5,0) ECTS, 2V + 1Ü 

 General concepts: Growth of functions and asymptotic complexity.  
Graph theory: Euler graphs, spanning trees, shortest paths, Travelling-
Salesman-Problem.  
Search problems: Sorting, decision trees.  
Coding/Cryptography: Huffman-encoding, RSA-algorithm.  
Further topics (examples): Matchings in bipartite graphs, flow algorithmens. 



•  exercise groups:  registration via TUCaN 

                                  begin of exercises: Wednesday  18.4.2012 

                                       

• exercises, procedure: 

   release dates: Tuesday 19:00  (in the Web, deadline on exercise sheet) 

   delivery dates:  usually next Tuesday after the reading  

 

• assessment: The grade of the written exam can be upgraded via active  

   participation in exercises and with the help of solving ‚many‘ of the  

   exercise items. Partially, the exam will contain multiple-choice items about  

   the homework. 

• Working in small groups is recommended 

   (groups with up to 4 students are allowed to work together!) 

 

Organisation 



• 3 or 4 items per sheet. In irregular intervals:  

  programing exercises with longer lasting handling time.  

  Additionally:  simplified items in the exercises  

 

 

• If necessery, the exercises will deal more extensively with the lecture, 

  otherwise small tasks in small groups.  

 

 ! You can only learn by “do it yourself“,  

    only “read + listen“ is not enough! 

Organization 
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Contents 

 Introduction 

 Complexity theory 

– Data structures and encoding schemes 

– Algorithms 

– Asymptotic notation, upper and lower bounds 

– Complexity classes P, NP; NP-complete problems 

 Algorithms for graphs 

– DFS algorithm 

– Greedy-algorithms (e.g.: computing spanning trees) 

– Dijkstra, Moore-Bellmann (shortest paths on graphs) 

– Ford-Fulkerson (maximum flows in networks, matchings) 

 Abstract data types (stack, queue, heap) and again DFS, BFS and Dijkstra  

 Sorting on arrays 

– Mergesort, Quicksort, Heapsort 

– Divide-and-Conquer 

– Lower complexity bounds for sorting by comparison 



Algorithmic every day problems:  

 

•  How does a navigation system find “good“ connections? 

 

•  How can we find optimal paths for gas in a gas distribution system? 

 

•  How does e.g. Lufthansa optimize its aircraft assignments? 

 

 

Introduction 

Algorithm, informal explanation:  

          A sequence of easy understandable actions to perform,  

          on the right level of abstraction. 



Introduction, “good” connections 



Introduction, “good” connections 



Introduction, “good” connections 

• street map graph; problem: find shortest path between start and end points 

• This graph might describe a gas network, as well; problem then e.g.: what is  

  the best opportunity to distribute the gas to some consumers? 



Introduction, “good” connections 

• street map graph; problem: find shortest path between start and end points 

• This graph might describe a gas network, as well; problem then e.g.: what is  

  the best opportunity to distribute the gas to some consumers? 

1 

2 
0,7 

0,5 1 

1 

0,2 

2 
0,2 

1 

1,2 1 

1 

1 

1,3 

1,3 

1 

1 

1 

1 

1,2 
1 

1,1 

2 

1 

1,2 1,2 

1 
1 0,5 

2 
1 

1 

1,5 

2 

3 
0,1 

4 
5 

4 

0,1 

4 
2 

1 

0,2 

1,5 

2 

2 

3,5 

1,1 
2 

1,3 

2 

5 

2 
1,5 

1 

0,3 

1,1 

0,3 0,3 

1,5 

s 

t 



Optimization in airline industries 

Fleet 
Assignment 

Aircraft 
Rotation 

Crew 
Pairing 

Crew 
Rostering 

Operation 
Control 

Network 
Design 

Market 
Modeling 

Revenue 
Management 



Fleet Assignment  

PAD 

HAM 

FRA 

JFK 

BOS 

LAX 

LHR 

Boeing 747 

Boing 737 

Airbus 310 

Boeing 747 
Airbus 310 

Airbus 310 

Canadair Jet 

Assignment of aircraft types to so called legs 

 Maximize the earnings 

Restrictions: 

 limited amount of aircrafts 

 balanced flight plan 

 lots of operative restrictions 



Time-Space Network 

PAD 

MUC 

FRA 

leg (flight) A 

flight event 
ground edge 

Weekly planning with up to 10.000 flight events, 10-23 aircraft types 

xl,f 

yv,v+ 

v v+ 

v- 



Linear Program for Fleet Assignment 

(xl,f = 1)  (leg l is operated with fleet f) 

yv,v+ : number of waiting aircrafts bewteen two flight events 

 Mathematical Model, Linear Programm  Optimization I - III 

 Model size: 

   |legs|*|fleets| integer variables, 2*|legs|*|fleets| constraints 

   thus about 230,000 variables, 500,000 constraints 

 solution times for gettimg exact solutions took too long at that time (ca. year 2k) 



Results for Fleet Assignment, Heuristics 

Verfahren HC SA MIP 

-Lösungsqualität 98,5% 99,7% >99,9% 



Parallel Simulated Annealing 

processors processors processors processors processor 



Important for practice is speed 
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First algorithmic example 

 The max sum problem 
 
Input: Sequence a1,...,an of integer numbers. Let f(i,j) := ai+ai+1+...+aj, 
 for 1 ≤ i ≤ j ≤ n. 
Desired: maximized f(i,j). 
 
For an efficiency analysis, we only count at this place  

– the number of used comparisons V(n) beteen numbers and  

– the number of used arithmetic operations.  

– The runtime is defined as T(n) = A(n) + V(n). 

 

 

    In the following, 4 different algorithms are presented and analysed in 
detail.  



 Algorithm 1 (naive algorithm) 

1. compute all f(i,j), one after the other 

2. choose the one with largest f(i,j) 

 

 Example: given. (3,-2,4,-5) 

 
 f(1,1) = 3  f(1,2) = 3-2 f(1,3) = 3-2+4 f(1,4) = 3-2+4-5 

 
 f(2,2) = -2 f(2,3) = -2+4 f(2,4) = -2+4-5 

 
 f(3,3) = 4 f(3,4) = 4-5 

 
 f(4,4) = -5 

First algorithmic example 
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 Algorithm 1 (naive algorithm) 

1. compute all f(i,j),  // f(1,1), f(1,2), f(1,3)... f(1,n), f(2,1)... 

2. choose the largest  f(i,j) 

 

 Analysis: We need j-i sumations in order to compute f(i,j).   
 
   

 

 In order to determine the maximum of L numbers, L-1 comparisons are 
needed. Here, it is L = ½ (n  (n-1)) + n. (why?)  Therefore,   

First algorithmic example 
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 Algorithm 2 (normal algorithm) 
f(i,j) can be computed more efficiently: do not compute f(i,j+1) completely 
new, but instead use that f(i,j+1) =  f(i,j)+aj+1 and f(i,j) is already known. 
We compute f(i,j) in the following order: 
 
 
 
 

 

 
 
and thereafter compute the maximum. Now, V(n) is the same as in the 
naive algorithm. However, we consume only one addition in order to 
compute f(i,j), j > i: 
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First algorithmic example 
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 Algorithm 3 (Divide & Conquer algorithm) 
 
In order to become better: do not compute all f(i,j) !  
 
General methodology „Divide & Conquer“: 

 
Partition the given problem into several subproblems of the same type  
(„divide“), solve the subproblems (recursively) and construct a solution 
of the original problem with the help of the two partial solutions 
(„Conquer“). 

 

 

In the following, we assume for simplicity that n is of the form   
                      n=2k for some natural number k. 

First algorithmic example 
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 For1 ≤ a ≤ b ≤ n we define: 
 
 
 
 
 
 
 
 
Then it is valid for σ(1,n): 
 
 
 
Example: 

First algorithmic example 

(l,r) : (al ,...,ar) : max f (i, j),l i j r ,

s1 : max f (i,
n

2
), 1 i

n

2
,

s2 : max f (
n

2
1, j),

n

2
1 j n .

(1,n) : max (1,
n

2
), (

n

2
1,n),s1 s2 .

(-10,5,2,-7,        3,6,-9,11) 

  σ(1,4)=7         σ(5,8)=11 

  s1=0            s2=11 
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=?     s2=? 

σ1 = ?        σ2=?  
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=?    s2=? 

σ1=?   σ2=?    

11.04.2012 |  Algorithm, Complexity|  27 

 



 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

First algorithmic example 

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=?   σ2=?    
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=?   σ2=?    

(-10,       5) 

s 1 =?  s 2 =? 

σ1=?   σ2=?       
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=?   σ2=?    

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

First algorithmic example 

(-10,       5) 

s1=-10  s2=5 

σ1=?   σ2=?       
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=?   σ2=?    

(-10,       5) 

s1=-10  s2=5 

σ1=?   σ2=?       

(-10) 
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=?   σ2=?    

(-10,       5) 

s1=-10  s2=5 

σ1=-10   σ2=?       

(-10) 
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=?   σ2=?    

(-10,       5) 

s1=-10  s2=5 

σ1=-10   σ2=?       

(-10) (5) 
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=?   σ2=?    

(-10,       5) 

s1=-10  s2=5 

σ1=-10   σ2=5       

(-10) (5) 
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=5   σ2=?    

(-10,       5) 

s1=-10  s2=5 

σ1=-10   σ2=5       

(-10) (5) 
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = ?        σ2=?  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=5   σ2=2    

(-10,       5) 

s1=-10  s2=5 

σ1=-10   σ2=5       

(-10) (5) 

(2,       -7) 

s1=2   s2=-7 

σ1=2   σ2=-7       

(2) (-7) 
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 function σ(a1,...,an) 
   if n=1, return an    
   if n>1, compute s1 and s2 as well as σ1=σ(a1,...,an/2) and σ2=σ(an/2+1,...,an). 
   return max{σ(a1,...,an/2), σ(an/2+1,...,an), s1+s2}.   

First algorithmic example 

(-10,5,2,-7, 3,6,-9,11) 

 s1=0     s2=11 

σ1 = 7        σ2=11  

(-10,5, 2,-7) 

s1=5    s2=2 

σ1=5   σ2=2    

(3,6,  -9,11) 

s1=9  s2=2 

σ1=9   σ2=11    

(-10,       5) 

s1=-10  s2=5 

σ1=-10   σ2=5       

(2,       -7) 

s1=2   s2=-7 

σ1=2   σ2=-7       

( 3 ,      6 ) 

s 1 = 3   s 2 = 6 

σ1=3   σ2=6    

( - 9 ,    11 ) 

s1=-9  s2=11 

σ1=-9   σ2=11    

(-10) (5) (2) (-7) (3) (-9) (11) (6) 

out 
11 
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 Analysis: 
   let T(n) be the number of operations (comparisons + additions), 
   consumed by the D&C algorithm on inputs of length n. 

 

  Then:      T(1) = 0, and for n > 1: T(n)=2T(n/2)+2n-1 

 

    Reasoning:  

 In order to compute σ(a1,...,an/2), σ(an/2+1,...,an), our algorithm is called 
twice for inputs of length  n/2. 

 In order to compute s1 and s2 we have to perform n/2-1 aditions and 
comparisons twice. 

 One further addition computes s1 + s2. 

 Two further comparisons are consumed in order to determine the 
maximum.   

 

 

 

 

 

 

In total: 2(n/2 – 1 + n/2 -1) + 2 +1 = 2n - 1  

 

 

 

 

 

 

In total: 2(n/2 – 1 + n/2 -1) + 2 +1 = 2n - 1  

First algorithmic example 
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 Analysis: 
Result: a so called recursive equation / recurrence for the running time  
(for technical reasons we substitute n by 2k) 

First algorithmic example 

12)2(2)2(:1,0)1( 11 kkk TTkforandT

(this is typical for recursive algorithms, especially for  D&C) 

Several replacements result in:  

T(2k ) 2T(2k 1) 2k 1 1

2(2T(2k 2) 2k 1) 2k 1 1

4T(2k 2) (2k 1 2) (2k 1 1)

8T(2k 3) (2k 1 4) (2k 1 2) (2k 1 1)
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 Analysis: 

First algorithmic example 

12)2(2)2(:1,0)1( 11 kkk TTkforandT

... and, as a consequence, the following conjecture:  

T(2k) 2lT(2k l ) 2k 1 2i 1

i 1

l

Such that for l=k it will be valid: 

T(2k ) 2kT(20) (2k 1 2i 1)
i 1

k

0 k 2k 1 2i 2k 2k (2k 1)
i 0

k 1

2n log2(n) n 1 Proof: Exercise 
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 Algorithm 4 (clever algorithmus) 

 (scans over the input exactly once) 

 

 Max := a1; Max* := Max; 

     For l = 2,...,n 

  Max* := max{Max* + al, al} 

  Max  := max{Max*,Max} 

 Output: Max 

 

 Correctness: 

  Claim.: after the l-th loop execution, it is 

    Max* max f (i,l),1 i l

Max (1,l) max f (i, j),1 i j l

Example: 

(-10,5,2,-7,3,6,-9,11) Max*= -10, Max = -10 

(-10,5,2,-7,3,6,-9,11) Max*=    5, Max =    5 

(-10,5,2,-7,3,6,-9,11) Max*=    7, Max =    7 

(-10,5,2,-7,3,6,-9,11) Max*=    0, Max =    7 

(-10,5,2,-7,3,6,-9,11) Max*=    3, Max =    7 

(-10,5,2,-7,3,6,-9,11) Max*=    9, Max =    9 

(-10,5,2,-7,3,6,-9,11) Max*=    0, Max =    9 

(-10,5,2,-7,3,6,-9,11) Max*=   11, Max =  11 

First algorithmic example 
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Insertion, repetition: Induction proofs 

Claim: A certain statement A(n) is valid for all 

 

Proof: I.) proof of the „base clause“ !  

   A(1) is true, is a correct statement 

  II.) proof of the „induction step“! 

   For all            : if A(n-1) is true, then also A(n) is true 

 

The claim follows from I.) and II.): 

  A(1) is true, because of I.) 

 =>  A(2) is true, because of II.) 

 => A(3) is true, because of II.)  => ... Etc. 

  

First algorithmic example 

n IN

n IN
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 Analysis: 

 Induction: 

  l=2: after the first loop execution: 

  Max* max a1 a2,a2 max f (1,2), f (2,2) ,

Max max a1 a2,a2,a1 (1,2)

l-1  l:   
(Maxl-1 und Max*l-1 describe Max and Max* after the  (l-2)-th execution of the loop) 

Concerning the induction hypothesis, it is: 

Max *l 1 max f (i,l 1),1 i l 1 ,

Maxl 1 (1,l 1)

First algorithmic example 
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 Analysis: 

 this implies: 

  

Thus, with Max =σ(1,n), the correct value is computed and   

• A(n) = n-1 

• V(n): two comparisons per loop execution, thus 2(n-1) comparisons in total 

• T(n) = 3n-3 

),1(

}1),({)}1,1({max

*,max

1),(max

}{}11)1,({max

,*max*

1

1

l

liwithlifl

MaxMaxMax

liwithlif

aliwithalif

aaMaxMax

IH

l

ll

IH

lll

First algorithmic example 

11.04.2012 |  Algorithm, Complexity|  44 

 



n 

naive 

1/6 n3+1/2 n2+1/3 n-1 

 

normal 

n2 - 1 

divide & conquer 

2n log (n) - n + 1 

clever 

3n - 3 

 

22 = 4 

 

24 = 16 

 

26 = 64 

 

28 = 256 

 

210 = 1024 

 

215 = 32768 

 

19 

 

814 

 

45759 

 

2829055 

 

179418599 

 

> 5 ·1012 

15 

 

255 

 

4095 

 

65535 

 

1048575 

 

 109 

 

13 

 

113 

 

705 

 

3841 

 

19457 

 

950273 

 

 

9 

 

45 

 

189 

 

765 

 

3069 

 

98301 

 

e.g.. clever needs for n = 1024 approx. As much time as divide & conquer for n = 256 or as normal for n = 64. 

First algorithmic example 
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First algorithmic example 

 

Questions: 

 Is it really necessary to make such an effort for analyses? This is 
already complicated and boring for small examples with three lines.  

 Why did we count comparisons and additions? Could we also count 
multiplications? Why did we deal with the addition in the same way as 
with the comparison? Is that really the rigth way? 

 Why do we use just the number of sequence items as an parameter of 
analysis? Isn‘t the consequence that everybody counts whatever 
he/she likes to count? Is it possible to reach better comparability? 

 How do I know whether I have discovered a good algorithm? 
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