Algorithmic
 Discrete Mathematics
 2. Exercise Sheet

TECHNISCHE UNIVERSITAT DARMSTADT

Department of Mathematics
PD Dr. Ulf Lorenz
Dipl.-Math. David Meffert

SS 2012
2. and 3. May 2012

Version of June 21, 2012

Groupwork

Exercise G1 (Master-Theorem)
Determine, if possible, fixed bounds for the complexities of the recurrences
(a) $T(n)=4 T\left(\frac{n}{2}\right)+n^{3}$,
(b) $T(n)=4 T\left(\frac{n}{2}\right)+n$,
(c) $T(n)=4 T\left(\frac{n}{2}\right)+n^{2} \log n$,
(d) $T(n)=4 T\left(\frac{n}{2}\right)+n^{2}$.

Hint:

Solution: Throughout the whole exercise we have $\log _{b} a=\log _{2} 4=2$.
(a) We have $f(n)=n^{3}$. So $f(n) \in \Omega\left(n^{2+\varepsilon}\right)$, because of $0 \leq 1 \cdot n^{3} \leq f(n)$. Furthermore $4 \cdot f\left(\frac{n}{2}\right)=4 \frac{n^{3}}{8}=\frac{1}{2} n^{3} \leq c \cdot f(n)$, holds for $c=\frac{1}{2}$. So by the third case of the Master-Theorem we conclude $T(n) \in \Theta\left(n^{3}\right)$.
(b) We have $f(n)=n$. So $f(n) \in O\left(n^{2-\varepsilon}\right)$ for $\varepsilon=1$ because of $f(n) \leq 1 \cdot n$. By the first case of the Master-Theorem we conclude $T(n) \in \Theta\left(n^{2}\right)$.
(c) We have $f(n)=n^{2} \log n$. We immediately see $f(n) \notin O\left(n^{2-\varepsilon}\right)$ and $f(n) \notin \Theta\left(n^{2}\right)$. We want to show that third case of the Master-Theorem can't be used either, because the second condition can't be fulfilled. Le $c \in(0,1)$. We get

$$
\begin{array}{lr}
& 4 \cdot f\left(\frac{n}{2}\right) \leq c \cdot f(n) \\
\Leftrightarrow & 4 \cdot \frac{n^{2}}{4} \log \left(\frac{n}{2}\right) \leq c \cdot n^{2} \log (n) \\
\Leftrightarrow & n^{2} \log \left(\frac{n}{2}\right) \leq c \cdot n^{2} \log (n) \\
\Leftrightarrow & \log (n)-\log (2) \leq c \cdot \log (n) \\
\Leftrightarrow & \log (n)-1 \leq c \cdot \log (n) \\
\Leftrightarrow & -1 \leq \log (n)(c-1) \\
\Leftrightarrow & \frac{-1}{c-1} \geq \log (n)
\end{array}
$$

This can't hold for all $n \in \mathbb{N}$ because $\{\log (n) \mid n \in \mathbb{N}\}$ is not bounded. So $c \in(0,1)$ ist not a possible choice. By this example we can see that although the Master-Theorem is quite powerful it can't be used for alle types of recurrences.
(d) We have $f(n)=n^{2}$. So $f(n) \in \Theta\left(n^{2}\right)$ because of $0 \leq 1 \cdot n^{2} \leq f(n) \leq 1 \cdot n^{2}$. By the second case of the Master-Theorem we conclude $T(n) \in \Theta\left(n^{2} \log n\right)$.

Exercise G2 (Complexity)
(a) Let $f, t: \mathbb{N} \rightarrow \mathbb{R}$ be functions with $f \in O(t)$. Prove $O(f)+O(t) \subseteq O(t)$ and $O(f)+O(f) \subseteq O(t)$.
(b) Does $3^{3+n} \in O\left(3^{n}\right)$ hold?
(c) Does $3^{3 n} \in O\left(3^{n}\right)$ hold?
(d) Show that $O(f) \cdot O(g)=O(f \cdot g)$ holds for $f, g: \mathbb{N} \rightarrow \mathbb{R}_{+}$.

Remark: For real valued functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$ one just substitutes $f(n), g(n)$ with $|f(n)|,|g(n)|$ in the definition of $O(g)$.

Solution:

(a) Let $g, h: \mathbb{N} \rightarrow \mathbb{R}$ with $g \in O(f)$ and $h \in O(t)$. By definition we get $n_{g}, n_{h} \in \mathbb{N}, c_{g}, c_{h} \in \mathbb{R}$ with

$$
|g(n)| \leq c_{g}|f(n)| \quad \text { and } \quad|h(n)| \leq c_{h}|t(n)|
$$

for all $n \geq n_{g}, n_{h}$. Furthermore by assumption we get $n_{f} \in \mathbb{N}$ and $c_{f} \in \mathbb{R}$ with $|f(n)| \leq c_{f}|t(n)|$ for all $n \geq n_{f}$. Putting things together we conclude

$$
\begin{aligned}
|g(n)+h(n)| & \leq c_{g}|f(n)|+c_{h} \cdot|t(n)| \leq c_{g} c_{f}|t(n)|+c_{h} \cdot|t(n)| \\
& =\left(c_{g} c_{f}+c_{h}\right)|t(n)|
\end{aligned}
$$

for all $n \geq \max \left\{n_{g}, n_{h}, n_{f}\right\}$. So we get $g+h \in O(t)$.
The second inclusion can be proved the same way or alternatively by showing $O(f) \subseteq O(t)$.
(b) We have $3^{3+n} \in O\left(3^{n}\right)$ because of $3^{3+n}=27 \cdot 3^{n} \leq 27 \cdot 3^{n}$ for all $n \in \mathbb{N}$.
(c) The term $3^{3 n}=27^{n}$ is obviously not in $O\left(3^{n}\right)$.
(d) By definition we have

$$
h \in O(f) \Leftrightarrow \exists c_{h}, n_{h} \quad h(n) \leq c_{h} f(n) \quad \forall n \geq n_{h}
$$

and

$$
k \in O(g) \Leftrightarrow \exists c_{k}, n_{k} \quad k(n) \leq c_{k} g(n) \quad \forall n \geq n_{k}
$$

So for $h \in O(f)$ and $k \in O(g)$ we have

$$
(h \cdot k)(n) \leq c_{k} c_{h}(f \cdot g)(n) \quad \forall n \geq \max \left\{n_{h}, n_{k}\right\} .
$$

and therefore $h \cdot k \in O(f \cdot g)$. This proves the first inclusion.
For the second one let $l \in O(f \cdot g)$. This means there exist $n_{l} \in \mathbb{N}$ and $c_{l} \in \mathbb{R}$ with $l(n) \leq c_{l}(f \cdot g)(n)$ for all $n \geq n_{l}$. Now set $l=f \cdot \frac{l}{f}$. Obviously $f \in O(f)$ and by dividing the last inequality by $f(n)$ we get $\left(\frac{l}{f}\right)(n) \leq c_{l} g(n)$ for all $n \geq n_{l}$. So we have $\frac{l}{f} \in O(g)$.

Exercise G3 (Algorithms)

(a) Given two algorithms A and B :

- Algorithm A has complexity $O(f)$.
- Algorithm B has complexity $O(g)$.

We want to look at two new algorithms using A and B.

```
Algorithm 1
    INPUT : }n\in\mathbb{N
    for i=1,\ldots,100 do
        run algorithm A
    end for
    for i=1,\ldots,, \frac{n}{2}}\mathrm{ do
        run algorithm B
    end for
```

```
Algorithm 2
    if n\geq30 then
        run algorithm A
    else
        run algorithmus B
    end if
```

We already know $f \in \Omega(g)$. Determine the best possible estimates for the runtime of both algorithms.
(b) Take a look at algorithm 3 and determine the best possible estimate for its runtime. Justify you answer.

```
Algorithm 3
    INPUT : \(\mathrm{n} \in \mathbb{N}\)
    \(\mathrm{m}=\mathrm{n}\)
    while \(m>1\) do
        for \(\mathrm{j}=1, \ldots, \frac{n}{2}\) do
            \(\mathrm{a}=3 \cdot \mathrm{~b}\)
            \(\mathrm{c}=\mathrm{a}+\mathrm{b}\)
        end for
        \(\mathrm{m}=\frac{1}{2} \cdot \mathrm{~m}\)
    end while
```


Solution:

(a) For the runtime of algorithm 1 we get $100 \cdot O(f)+\frac{n}{2} \cdot O(g)$. Because we already know $f \in \Omega(g)$ we can summarize that to $O(f \cdot h)$ with $h(n)=n$.
For algorithm 2 we notice that only the runtime for $n \rightarrow \infty$ is important. So only the second case of the if-part is relevant. Hence algorithm 2 has runtime $O(f)$.
(b) We go through the outer loop $\log n$ times. The inner loop we go through $\frac{n}{2}$ times. Ignoring any constant factors we get $O(n \log n)$ for the runtime of the algorithm.

Exercise G4 (Sets)
Order the functions

$$
n^{2}, \sqrt{n}, n!, n^{n}, n
$$

by their complexity. Start with lowest complexity and use the o-notation. Determine n_{0} dependend on $c>0$ in every of those cases, too.

Remark:

$$
f \in o(g): \Longleftrightarrow \forall c>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: 0 \leq f(n)<c g(n)
$$

Solution:

$$
\begin{aligned}
\sqrt{n} \in o(n) & n_{0}=\left\lceil\frac{1}{c^{2}}\right\rceil \\
n \in o\left(n^{2}\right) & n_{0}=\left\lceil\frac{1}{c}\right\rceil \\
n^{2} \in o(n!) & n_{0}=\max \left\{6,\left\lceil\frac{1}{c}\right\rceil\right\} \\
n!\in o\left(n^{n}\right) & n_{0}=\max \left\{3,\left\lceil\frac{1}{c}\right\rceil\right\}
\end{aligned}
$$

For explanation: In last two cases we have chosen $n_{0} \geq 6, n_{0} \geq 3$ because $n!>n^{3}$ holds for $n \geq 6$ and $n^{n}>n \cdot n!$ holds for $n \geq 3$. Should be a easy exercise to proof this.

Homework

Exercise H4 (Asymptotics)

(a) Prove that for $r_{1}, r_{2} \in \mathbb{R}_{+}$we have $n^{r_{1}} \in O\left(n^{r_{2}}\right)$ and $r_{1}^{n} \in O\left(r_{2}^{n}\right)$ iff $r_{1} \leq r_{2}$.
(b) Prove the following statements for functions $f, t: \mathbb{N} \rightarrow \mathbb{R}$:
i. $O(f)+O(f) \subseteq O(f)$.
ii. $O(f) \cdot O(t) \subseteq O(f \cdot t)$.
iii. $\max \{f, t\} \in \Theta(f+t)$ for $f, t \geq 0$.

Solution:

(a) For all $n \in \mathbb{N}$ the statement $n^{r_{1}} \leq c n^{r_{2}}$ is equivalent to $n^{r_{1}-r_{2}} \leq c$. The function n^{x} is bounded iff $x \leq 0$, which means $r_{1} \leq r_{2}$.
The second statement can be proved the same way. For all $n \in \mathbb{N}$ the statement $r_{1}^{n} \leq c r_{2}^{n}$ is equivalent to $\left(\frac{r_{1}}{r_{2}}\right)^{n} \leq c$. The function x^{n} is bounded iff $x \leq 1$, which means $r_{1} \leq r_{2}$.
(b) The proofs all work the same way in general by playing around with the definitions.
i. Let $g, h: \mathbb{N} \rightarrow \mathbb{R}$ with $g, h \in O(f)$. By definition we have $c_{g}, c_{h} \in \mathbb{R}$ and $n_{g}, n_{h} \in \mathbb{N}$ with

$$
|g(n)| \leq c_{g}|f(n)| \quad \text { and } \quad|h(n)| \leq c_{h}|f(n)|
$$

for all $n \geq n_{g}, n_{h}$. We conclude

$$
|g(n)+h(n)| \leq|g(n)|+|h(n)| \leq\left(c_{g}+c_{h}\right) \mid f(n)
$$

for all $n \geq \max \left\{n_{g}, n_{h}\right\}$, which means $g+h \in O(f)$.
ii. Let $g, h: \mathbb{N} \rightarrow \mathbb{R}$ with $g \in O(f)$ and $h \in O(t)$. By definition we have $c_{g}, c_{h} \in \mathbb{R}$ and $n_{g}, n_{h} \in \mathbb{N}$ with

$$
|g(n)| \leq c_{g}|f(n)| \quad \text { and } \quad|h(n)| \leq c_{h}|t(n)|
$$

for all $n \geq n_{g}, n_{h}$. We conclude

$$
|g(n) \cdot h(n)|=|g(n)| \cdot|h(n)| \leq c_{g}|f(n)| \cdot c_{h}|t(n)|=\left(c_{g} c_{h}\right)|(f \cdot t)(n)| .
$$

for all $n \geq \max \left\{n_{g}, n_{h}\right\}$, which means $g \cdot h \in O(f \cdot t)$.
iii. We want to proof the inequality

$$
\begin{equation*}
\max \{f, t\}(n) \geq \frac{1}{2}(f(n)+t(n)) \tag{1}
\end{equation*}
$$

pointwise for all $n \in \mathbb{N}$ and therefore distinguish two cases. For every $n \in \mathbb{N}$ with $f(n) \geq t(n)$ we get

$$
\max \{f, t\}(n)=f(n)=\frac{1}{2}(f(n)+f(n)) \geq \frac{1}{2}(f(n)+t(n))
$$

For all other $n \in \mathbb{N}$ with $t(n) \geq f(n)$ we get

$$
\max \{f, t\}(n)=t(n)=\frac{1}{2}(t(n)+t(n)) \geq \frac{1}{2}(f(n)+t(n))
$$

the same way. So by equation (1) we conclude $\max \{f, t\} \in \Omega(f+t)$. Because of the obvious inequality $\max \{f, g\}(n) \leq(f+g)(n)$ we get $\max \{f, g\} \in O(f+g)$. Hence we have $\max \{f, g\} \in \Theta(f+g)$.

Exercise H5 (A sorting algorithm)
(10 points)
The algorithm SortList sorts a sequence of numbers in ascending order.

```
Algorithm 4 SortList(list)
    INPUT: sequence of numbers, list \(=a_{1}, \ldots, a_{n}, a_{i} \in \mathbb{N}\)
    if \(\mathrm{n}<=1\) then
        return list
    else
        leftlist \(=a_{1}, \ldots, a_{\left\lceil\frac{n}{2}\right\rceil}\)
        rightlist \(=a_{\left\lceil\frac{n}{2}\right\rceil+1}, \ldots, a_{n}\)
        return Sort(SortList(lelftlist),SortList(rightlist))
    end if
```

```
Algorithm 5 Sort(rightlist, leftlist)
    INPUT: two sequences of numbers:
    rightlist = a , ,.., a
    newlist
    while rightlist and leftlist not empty do
        if first element of leftlist <= first element of rightlist then
            append first element of leftlist to newlist and delete it from leftlist
        else
            append first element of rightlist to newlist and delete it from rightlist
        end if
    end while
    while leftlist not empty do
        append first element of leftlist to newlist and delete it from leftlist
    end while
    while rightlist not empty do
        append first element of rightlist to newlist and delete it from leftlist
    end while
    return newlist
```

(a) Sort the sequence $9,10,7,3,1,2,12,9,23$ in ascending order by using the algorithm SortList. Make sure to include detailed steps for the algorithm in your solution to indicate that you understand how it works.
(b) What is the runtime of the algorithm SortList?

Solution:

(a) We use the short term S for the algorithm Sort and write S (rightlist; leftlist). For the algorithm SortList we use the short term SL. So we have

$$
\begin{aligned}
S L(9,10,7,3,1,2,12,9,23) & \rightsquigarrow S(S L(9,10,7,3,1) ; S L(2,12,9,23)) \\
& \rightsquigarrow S(S(S L(9,10,7) ; S L(3,1)) ; S(S L(2,12) ; S L(9,23))) \\
& \rightsquigarrow S(S(S(S L(9,10) ; S L(7)) ; S(S L(3) ; S L(1))) ; S(S(S L(2) ; S L(12)) ; S(S L(9), S L(23)))) \\
& \rightsquigarrow S(S(S(S(S L(9), S L(10)) ; 7) ; S(3 ; 1)) ; S(S(2 ; 12) ; S(9,23))) \\
& \rightsquigarrow S(S(S(S(9,10) ; 7) ; S(3 ; 1)) ; S(S(2 ; 12) ; S(9,23))) \\
& \rightsquigarrow S(S(S(9,10 ; 7) ; S(3 ; 1)) ; S(S(2 ; 12) ; S(9,23))) \\
& \rightsquigarrow S(S(7,9,10 ; 1,3) ; S(2,12 ; 9,23)) \\
& \rightsquigarrow S(1,3,7,9,10 ; 2,9,12,23) \\
& \rightsquigarrow 1,2,3,7,9,9,10,12,23 .
\end{aligned}
$$

Now we want to show the the last step in detail and thereby demonstrate how the Sort algorithm works. We use S (rightlist; leftlist; newlist) to indicate all the steps and get

$$
\begin{aligned}
S(1,3,7,9,10 ; 2,9,12,23 ; \emptyset) & \rightsquigarrow S(3,7,9,10 ; 2,9,12,23 ; 1) \rightsquigarrow S(3,7,9,10 ; 9,12,23 ; 1,2) \\
& \rightsquigarrow S(7,9,10 ; 9,12,23 ; 1,2,3) \rightsquigarrow S(9,10 ; 9,12,23 ; 1,2,3,7) \\
& \rightsquigarrow S(10 ; 9,12,23 ; 1,2,3,7,9) \rightsquigarrow S(10 ; 12,23 ; 1,2,3,7,9,9) \\
& \rightsquigarrow S(\emptyset ; 12,23 ; 1,2,3,7,9,9,10) \rightsquigarrow S(\emptyset ; 23 ; 1,2,3,7,9,9,10,12) \\
& \rightsquigarrow S(\emptyset ; \emptyset ; 1,2,3,7,9,9,10,12,23) \rightsquigarrow 1,2,3,7,9,9,10,12,23 .
\end{aligned}
$$

(b) The given algorithm is called MergeSort and is a recursive algorithm. We have $T(1)=1$ and get the recurrence

$$
\begin{aligned}
T(n) & =\underbrace{T\left(\frac{n}{2}\right)}_{\text {SortList(leftlist) }}+\underbrace{T\left(\frac{n}{2}\right)}_{\text {SortList(rightlist })}+\underbrace{n}_{\text {Sort }} \\
& =2 T\left(\frac{n}{2}\right)+n .
\end{aligned}
$$

By the Master-Theorem(second case) we conclude $T(n) \in \Theta(n \log n)$.

Exercise H6

Given algorithm 6. What does the algorithm? Determine its runtime.

```
Algorithm 6
    INPUT : n\in\mathbb{N}
    K1 = 2;
    K2 = n;
    while K2 > K1 do
        K2 = n/K1
        if \lceilK2\rceil== K2 then
            return K1
        else
            K1=K1+1
        end if
    end while
    return 0
```

Solution: The algorithm tests if a given number $n \in \mathbb{N}$ is prime. This is done by checking all possible divisors from $2, \ldots,\lfloor\sqrt{n}\rfloor$. The checking part works by dividing n by $i \in\{2, \ldots,\lfloor\sqrt{n}\rfloor\}$ and looking if this fraction is a natural number. If a divisor is found the algorithm returns this divisor and otherwise it returns 0 . In the case of output 0 the number n is prime. The relevant part for the runtime (while-condition) is used \sqrt{n} times, so the runtime is $\Theta(\sqrt{n})$).

