
Algorithmic
Discrete Mathematics
2. Exercise Sheet

Department of Mathematics SS 2012
PD Dr. Ulf Lorenz 2. and 3. May 2012
Dipl.-Math. David Meffert Version of June 21, 2012

Groupwork

Exercise G1 (Master-Theorem)
Determine, if possible, fixed bounds for the complexities of the recurrences

(a) T (n) = 4T (n
2
) + n3,

(b) T (n) = 4T (n
2
) + n,

(c) T (n) = 4T (n
2
) + n2 log n,

(d) T (n) = 4T (n
2
) + n2.

Hint:

Solution: Throughout the whole exercise we have logb a = log2 4= 2.

(a) We have f (n) = n3. So f (n) ∈ Ω(n2+ε), because of 0≤ 1 · n3 ≤ f (n). Furthermore 4 · f (n
2
) = 4 n3

8
= 1

2
n3 ≤ c · f (n),

holds for c = 1
2
. So by the third case of the Master-Theorem we conclude T (n) ∈Θ(n3).

(b) We have f (n) = n. So f (n) ∈ O(n2−ε) for ε = 1 because of f (n)≤ 1 · n. By the first case of the Master-Theorem we
conclude T (n) ∈Θ(n2).

(c) We have f (n) = n2 log n. We immediately see f (n) 6∈ O(n2−ε) and f (n) 6∈ Θ(n2). We want to show that third case
of the Master-Theorem can’t be used either, because the second condition can’t be fulfilled. Le c ∈ (0,1). We get

4 · f (
n

2
)≤ c · f (n)

⇔ 4 ·
n2

4
log(

n

2
)≤ c · n2 log(n)

⇔ n2 log(
n

2
)≤ c · n2 log(n)

⇔ log(n)− log(2)≤ c · log(n)

⇔ log(n)− 1≤ c · log(n)

⇔ −1≤ log(n)(c− 1)

⇔
−1

c− 1
≥ log(n)

1

This can’t hold for all n ∈ N because {log(n) | n ∈ N} is not bounded. So c ∈ (0,1) ist not a possible choice.
By this example we can see that although the Master-Theorem is quite powerful it can’t be used for alle types of
recurrences.

(d) We have f (n) = n2. So f (n) ∈Θ(n2) because of 0≤ 1·n2 ≤ f (n)≤ 1·n2. By the second case of the Master-Theorem
we conclude T (n) ∈Θ(n2 log n).

Exercise G2 (Complexity)
(a) Let f , t : N→ R be functions with f ∈ O(t). Prove O(f) +O(t)⊆ O(t) and O(f) +O(f)⊆ O(t).

(b) Does 33+n ∈ O(3n) hold?

(c) Does 33n ∈ O(3n) hold?

(d) Show that O(f) ·O(g) = O(f · g) holds for f , g : N→ R+.

Remark: For real valued functions f , g : N → R one just substitutes f (n), g(n) with | f (n)|, |g(n)| in the definition of
O(g).

Solution:

(a) Let g, h: N→ R with g ∈ O(f) and h ∈ O(t). By definition we get ng , nh ∈ N, cg , ch ∈ R with

|g(n)| ≤ cg | f (n)| and |h(n)| ≤ ch|t(n)|

for all n ≥ ng , nh. Furthermore by assumption we get n f ∈ N and c f ∈ R with | f (n)| ≤ c f |t(n)| for all n ≥ n f .
Putting things together we conclude

|g(n) + h(n)| ≤ cg | f (n)|+ ch · |t(n)| ≤ cg c f |t(n)|+ ch · |t(n)|
= (cg c f + ch)|t(n)|

for all n≥max{ng , nh, n f }. So we get g + h ∈ O(t).
The second inclusion can be proved the same way or alternatively by showing O(f)⊆ O(t).

(b) We have 33+n ∈ O(3n) because of 33+n = 27 · 3n ≤ 27 · 3n for all n ∈ N.

(c) The term 33n = 27n is obviously not in O(3n).

(d) By definition we have

h ∈ O(f)⇔∃ch , nh h(n)≤ ch f (n) ∀n≥ nh

and

k ∈ O(g)⇔∃ck , nk k(n)≤ ck g(n) ∀n≥ nk.

So for h ∈ O(f) and k ∈ O(g) we have

(h · k)(n)≤ ckch(f · g)(n) ∀n≥max{nh, nk}.

and therefore h · k ∈ O(f · g). This proves the first inclusion.
For the second one let l ∈ O(f · g). This means there exist nl ∈ N and cl ∈ R with l(n) ≤ cl(f · g)(n) for all n ≥ nl .

Now set l = f · l
f
. Obviously f ∈ O(f) and by dividing the last inequality by f (n) we get

�

l
f

�

(n) ≤ cl g(n) for all

n≥ nl . So we have l
f
∈ O(g).

Exercise G3 (Algorithms)
(a) Given two algorithms A and B:

• Algorithm A has complexity O(f).
• Algorithm B has complexity O(g).

We want to look at two new algorithms using A and B.

Algorithm 1

INPUT : n ∈ N
for i = 1, ..., 100 do

run algorithm A
end for
for i= 1, ..., n

2
do

run algorithm B
end for

2

Algorithm 2

if n≥ 30 then
run algorithm A

else
run algorithmus B

end if

We already know f ∈ Ω(g). Determine the best possible estimates for the runtime of both algorithms.

(b) Take a look at algorithm 3 and determine the best possible estimate for its runtime. Justify you answer.

Algorithm 3

INPUT : n ∈ N
m = n
while m > 1 do

for j = 1,..., n
2

do
a=3 · b
c = a +b

end for
m = 1

2
· m

end while

Solution:

(a) For the runtime of algorithm 1 we get 100 ·O(f)+ n
2
·O(g). Because we already know f ∈ Ω(g) we can summarize

that to O(f · h) with h(n) = n.

For algorithm 2 we notice that only the runtime for n→∞ is important. So only the second case of the if-part is
relevant. Hence algorithm 2 has runtime O(f).

(b) We go through the outer loop log n times. The inner loop we go through n
2

times. Ignoring any constant factors we
get O(n log n) for the runtime of the algorithm.

Exercise G4 (Sets)
Order the functions

n2,
p

n, n!, nn, n

by their complexity. Start with lowest complexity and use the o-notation. Determine n0 dependend on c > 0 in every of
those cases, too.

Remark:

f ∈ o(g) :⇐⇒ ∀c > 0∃n0 ∈ N∀n≥ n0 : 0≤ f (n)< cg(n)

Solution:

p
n ∈ o(n) n0 =

1
c2

£

n ∈ o(n2) n0 =

1
c

£

n2 ∈ o(n!) n0 =max
¦

6,

1
c

£©

n! ∈ o(nn) n0 =max
¦

3,

1
c

£©

For explanation: In last two cases we have chosen n0 ≥ 6, n0 ≥ 3 because n! > n3 holds for n ≥ 6 and nn > n · n! holds
for n≥ 3. Should be a easy exercise to proof this.

3

Homework

Exercise H4 (Asymptotics) (14 points)
(a) Prove that for r1, r2 ∈ R+ we have nr1 ∈ O(nr2) and rn

1 ∈ O(rn
2) iff r1 ≤ r2.

(b) Prove the following statements for functions f , t : N→ R:
i. O(f) +O(f)⊆ O(f).

ii. O(f) ·O(t)⊆ O(f · t).
iii. max{ f , t} ∈Θ(f + t) for f , t ≥ 0.

Solution:

(a) For all n ∈ N the statement nr1 ≤ cnr2 is equivalent to nr1−r2 ≤ c. The function nx is bounded iff x ≤ 0, which
means r1 ≤ r2.

The second statement can be proved the same way. For all n ∈ N the statement rn
1 ≤ crn

2 is equivalent to
�

r1
r2

�n
≤ c.

The function xn is bounded iff x ≤ 1, which means r1 ≤ r2.

(b) The proofs all work the same way in general by playing around with the definitions.
i. Let g, h: N→ R with g, h ∈ O(f). By definition we have cg , ch ∈ R and ng , nh ∈ N with

|g(n)| ≤ cg | f (n)| and |h(n)| ≤ ch| f (n)|

for all n≥ ng , nh. We conclude

|g(n) + h(n)| ≤ |g(n)|+ |h(n)| ≤ (cg + ch)| f (n)

for all n≥max{ng , nh}, which means g + h ∈ O(f).
ii. Let g, h: N→ R with g ∈ O(f) and h ∈ O(t). By definition we have cg , ch ∈ R and ng , nh ∈ N with

|g(n)| ≤ cg | f (n)| and |h(n)| ≤ ch|t(n)|

for all n≥ ng , nh. We conclude

|g(n) · h(n)|= |g(n)| · |h(n)| ≤ cg | f (n)| · ch|t(n)|= (cg ch)|(f · t)(n)|.

for all n≥max{ng , nh}, which means g · h ∈ O(f · t).
iii. We want to proof the inequality

max{ f , t}(n)≥
1

2
(f (n) + t(n)) (1)

pointwise for all n ∈ N and therefore distinguish two cases. For every n ∈ N with f (n)≥ t(n) we get

max{ f , t}(n) = f (n) =
1

2
(f (n) + f (n))≥

1

2
(f (n) + t(n)).

For all other n ∈ N with t(n)≥ f (n) we get

max{ f , t}(n) = t(n) =
1

2
(t(n) + t(n))≥

1

2
(f (n) + t(n))

the same way. So by equation (1) we conclude max{ f , t} ∈ Ω(f + t). Because of the obvious inequality
max{ f , g}(n)≤ (f + g)(n) we get max{ f , g} ∈ O(f + g). Hence we have max{ f , g} ∈Θ(f + g).

Exercise H5 (A sorting algorithm) (10 points)
The algorithm SortList sorts a sequence of numbers in ascending order.

Algorithm 4 SortList(list)

INPUT: sequence of numbers, list = a1, ..., an, ai ∈ N
if n <=1 then

return list
else

leftlist = a1, ..., ad n
2 e

rightlist = ad n
2 e+1, ..., an

return Sort(SortList(lelftlist),SortList(rightlist))
end if

4

Algorithm 5 Sort(rightlist, leftlist)

INPUT: two sequences of numbers:
rightlist = a1, ..., al , leftlist = b1, ..., bk, ai , bi ∈ N
newlist
while rightlist and leftlist not empty do

if first element of leftlist <= first element of rightlist then
append first element of leftlist to newlist and delete it from leftlist

else
append first element of rightlist to newlist and delete it from rightlist

end if
end while
while leftlist not empty do

append first element of leftlist to newlist and delete it from leftlist
end while
while rightlist not empty do

append first element of rightlist to newlist and delete it from leftlist
end while
return newlist

(a) Sort the sequence 9, 10, 7,3, 1,2, 12,9, 23 in ascending order by using the algorithm SortList. Make sure to include
detailed steps for the algorithm in your solution to indicate that you understand how it works.

(b) What is the runtime of the algorithm SortList?

Solution:

(a) We use the short term S for the algorithm Sort and write S(rightlist; leftlist). For the algorithm SortList we use the
short term SL. So we have

SL(9, 10,7, 3,1,2, 12,9, 23) S(SL(9, 10,7,3, 1); SL(2,12, 9,23))

 S(S(SL(9,10, 7); SL(3,1)); S(SL(2, 12); SL(9,23)))

 S(S(S(SL(9, 10); SL(7)); S(SL(3); SL(1))); S(S(SL(2); SL(12)); S(SL(9), SL(23))))

 S(S(S(S(SL(9), SL(10)); 7); S(3;1)); S(S(2;12); S(9,23)))

 S(S(S(S(9, 10); 7); S(3; 1)); S(S(2;12); S(9,23)))

 S(S(S(9,10; 7); S(3; 1)); S(S(2;12); S(9,23)))

 S(S(7,9, 10;1, 3); S(2,12; 9,23))

 S(1,3, 7,9, 10;2, 9,12, 23)

 1,2, 3,7, 9,9, 10,12, 23.

Now we want to show the the last step in detail and thereby demonstrate how the Sort algorithm works. We use
S(rightlist; leftlist; newlist) to indicate all the steps and get

S(1,3, 7,9, 10;2, 9,12, 23;;) S(3,7, 9,10; 2,9, 12,23; 1) S(3, 7,9, 10;9,12, 23;1, 2)

 S(7,9, 10;9, 12,23; 1,2, 3) S(9, 10;9, 12,23;1, 2,3, 7)

 S(10;9, 12,23; 1,2, 3,7, 9) S(10; 12,23; 1,2,3, 7,9, 9)

 S(;; 12, 23;1, 2,3, 7,9, 9,10) S(;; 23; 1,2, 3,7, 9,9, 10,12)

 S(;;;; 1, 2, 3, 7, 9, 9,10, 12,23) 1, 2,3,7, 9,9, 10,12, 23.

(b) The given algorithm is called MergeSort and is a recursive algorithm. We have T (1) = 1 and get the recurrence

T (n) = T (
n

2
)

︸ ︷︷ ︸

Sor t List(le f t l ist)

+ T (
n

2
)

︸ ︷︷ ︸

Sor t List(ri ght l ist)

+ n
︸︷︷︸

Sor t

= 2T (
n

2
) + n.

By the Master-Theorem(second case) we conclude T (n) ∈Θ(n log n).

5

Exercise H6 (6 points)
Given algorithm 6. What does the algorithm? Determine its runtime.

Algorithm 6

INPUT : n ∈ N
K1 = 2;
K2 = n;
while K2 > K1 do

K2 = n/K1
if dK2e== K2 then

return K1
else

K1=K1+1
end if

end while
return 0

Solution: The algorithm tests if a given number n ∈ N is prime. This is done by checking all possible divisors from
2, . . . , b

p
nc. The checking part works by dividing n by i ∈ {2, . . . , b

p
nc} and looking if this fraction is a natural number.

If a divisor is found the algorithm returns this divisor and otherwise it returns 0. In the case of output 0 the number n is
prime. The relevant part for the runtime (while-condition) is used

p
n times, so the runtime is Θ(

p
n)).

6

