Algorithmic
 Discrete Mathematics
 3. Exercise Sheet

TECHNISCHE UNIVERSITAT DARMSTADT

Department of Mathematics
PD Dr. Ulf Lorenz
Dipl.-Math. David Meffert

SS 2012
23. and 24. May 2012

Version of May 16, 2012

Groupwork

Exercise G1

Let the algorithm CLIQUE be defined by:
input : A graph G and a natural number k.
output : 'yes', if G contains a clique of cardinality k. Otherwise 'no'.
Let the algorithm IDEPENDENT SET (IS) be defined by:
input : A graph G and a natural number k.
output : 'yes', if G contains an independent set consisting of k vertices. Otherwise 'no'.
Show that CLIQUE \leq_{P} IS.
Exercise G2 (Bipartite graphs)
Prove that a graph (V, E) is bipartite iff it contains no cycles of odd length.
Exercise G3 (Eulerian graphs)
A path in a Graph $G=(V, E)$ is called Eulerian path, if it contains every edge $e \in E$ exactly once. An Eulerian path which is a cycle is called Eulerian cycle. A graph is called eulerian if it contains an Eulerian cycle.
(a) Which of the given graphs in Figure 1 are Eulerian graphs?

Figure 1: Eulerian graphs?
(b) Now let G be a connected graph. Name necessary conditions for G being eulerian.
(c) Are these conditions sufficient, too?

Exercise G4 (Primes and the class $\mathscr{N} \mathscr{P}$)
The class of problems whose complement is in $\mathscr{N} \mathscr{P}$ is called co- $\mathscr{N} \mathscr{P}$. For the following exercise assume that the coding length of a natural number n is given by $\langle n\rangle=\left\lfloor\log _{2} n\right\rfloor+1 .{ }^{2}$
(a) Show that the problem PRIMES, to determine if a given natural number is prime, is a co- $\mathscr{N} \mathscr{P}$ problem.
(b) Why would it be much harder to show that this problem is also in the class $\mathscr{N} \mathscr{P}$?
(c) Prove PRIMES $\in \mathscr{N} \mathscr{P}$ under the assumption $\langle n\rangle=n$.

Homework

Exercise H7 (Trees)
Let $G=(V, E)$ be a graph with $n \geq 2$ vertices. Proof that the following statements are equivalent:
(a) G is a tree
(b) G is connected and contains $n-1$ edges.
(c) G contains $n-1$ edges but no cycles.
(d) G is minimally connected. That means for every edge $e \in E$ the graph $G \backslash\{e\}=(V, E \backslash\{e\})$ is not connected.
(e) G contains no cycles and adding one edge generates exactly one cycle.
(f) For every two nodes $u, v \in V$ there is exactly one $[u, v]$-path in G.

Exercise H8 (The complement graph)
The complement graph \bar{G} of $G=(V, E)$ is the graph were two vertices are adjacent iff they are not adjacent in G. So formally speaking we have $\bar{G}:=\left(V,\binom{[n]}{2} \backslash E\right)$ with $\binom{[n]}{2} \backslash E:=\{(i, j) \mid i \neq j \in\{1, \ldots, n\}(i, j) \notin E\}$.

Let G be an undirected graph. Prove that G or \bar{G} is connected.

Exercise H9

Prove SUBSETSUM \leq_{p} PARTITION.
problem : SUBSETSUM
input : $a_{1}, \ldots, a_{n}, b \in \mathbb{N}$
output : $T \subseteq\{1, \ldots, n\}$ with $\sum_{k \in T} a_{k}=b$
problem : PARTITION
input : $a_{1}, \ldots, a_{l} \in \mathbb{N}$
output : $T \subseteq\{1, \ldots, l\}$ with $\sum_{k \in T} a_{k}=\sum_{k \notin T} a_{k}$

[^0]
[^0]: 2 This is the common binary representation of a natural number n. Hence you need $\left\lfloor\log _{2} n\right\rfloor+1$ digits.

