Algorithmic Discrete Mathematics 3. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics PD Dr. Ulf Lorenz Dipl.-Math. David Meffert **SS 2012 23. and 24. May 2012** Version of May 16, 2012

Groupwork

Exercise G1

Let the algorithm CLIQUE be defined by:

input : A graph *G* and a natural number *k*.

output : 'yes', if *G* contains a clique of cardinality *k*. Otherwise 'no'.

Let the algorithm IDEPENDENT SET (IS) be defined by:

input : A graph *G* and a natural number *k*.

output : 'yes', if *G* contains an independent set consisting of *k* vertices. Otherwise 'no'.

Show that CLIQUE \leq_p IS.

Exercise G2 (Bipartite graphs) Prove that a graph (V, E) is bipartite iff it contains no cycles of odd length.

Exercise G3 (Eulerian graphs)

A path in a Graph G = (V, E) is called *Eulerian path*, if it contains every edge $e \in E$ exactly once. An Eulerian path which is a cycle is called *Eulerian cycle*. A graph is called *eulerian* if it contains an Eulerian cycle.

(a) Which of the given graphs in Figure 1 are Eulerian graphs?

Figure 1: Eulerian graphs?

- (b) Now let *G* be a connected graph. Name necessary conditions for *G* being eulerian.
- (c) Are these conditions sufficient, too?

Exercise G4 (Primes and the class \mathcal{NP})

The class of problems whose complement is in \mathcal{NP} is called co- \mathcal{NP} . For the following exercise assume that the coding length of a natural number *n* is given by $\langle n \rangle = \lfloor \log_2 n \rfloor + 1.^2$

- (a) Show that the problem PRIMES, to determine if a given natural number is prime, is a co- \mathcal{NP} problem.
- (b) Why would it be much harder to show that this problem is also in the class \mathcal{NP} ?
- (c) Prove PRIMES $\in \mathcal{NP}$ under the assumption $\langle n \rangle = n$.

Homework

Exercise H7 (Trees)

Let G = (V, E) be a graph with $n \ge 2$ vertices. Proof that the following statements are equivalent:

- (a) G is a tree.
- (b) *G* is connected and contains n 1 edges.
- (c) *G* contains n 1 edges but no cycles.
- (d) *G* is minimally connected. That means for every edge $e \in E$ the graph $G \setminus \{e\} = (V, E \setminus \{e\})$ is not connected.
- (e) *G* contains no cycles and adding one edge generates exactly one cycle.
- (f) For every two nodes $u, v \in V$ there is exactly one [u, v]-path in *G*.

Exercise H8 (The complement graph)

The complement graph \overline{G} of G = (V, E) is the graph were two vertices are adjacent iff they are not adjacent in G. So formally speaking we have $\overline{G} := (V, {[n] \choose 2} \setminus E)$ with ${[n] \choose 2} \setminus E := \{(i, j) | i \neq j \in \{1, ..., n\} (i, j) \notin E\}$.

Let *G* be an undirected graph. Prove that *G* or \overline{G} is connected.

Exercise H9

Prove SUBSETSUM \leq_p PARTITION.

problem : SUBSETSUM

input : $a_1, ..., a_n, b \in \mathbb{N}$ output : $T \subseteq \{1, ..., n\}$ with $\sum_{k \in T} a_k = b$ problem : PARTITION input : $a_1, ..., a_l \in \mathbb{N}$ output : $T \subseteq \{1, ..., l\}$ with $\sum_{k \in T} a_k = \sum_{k \notin T} a_k$

² This is the common binary representation of a natural number *n*. Hence you need $\lfloor \log_2 n \rfloor + 1$ digits.

(10 points)

(10 points)

(10 points)