Algorithmic Discrete Mathematics 2. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics PD Dr. Ulf Lorenz Dipl.-Math. David Meffert

SS 2012 2. and 3. May 2012 Version of April 26, 2012

Groupwork

Exercise G1 (Master-Theorem) Determine, if possible, fixed bounds for the complexities of the recurrences

(a) $T(n) = 4T(\frac{n}{2}) + n^3$,

(b)
$$T(n) = 4T(\frac{n}{2}) + n$$
,

(c) $T(n) = 4T(\frac{n}{2}) + n^2 \log n$,

(d)
$$T(n) = 4T(\frac{n}{2}) + n^2$$

Hint:

Exercise G2 (Complexity)

(a) Let $f, t: \mathbb{N} \to \mathbb{R}$ be functions with $f \in O(t)$. Prove $O(f) + O(t) \subseteq O(t)$ and $O(f) + O(f) \subseteq O(t)$.

- (b) Does $3^{3+n} \in O(3^n)$ hold?
- (c) Does $3^{3n} \in O(3^n)$ hold?
- (d) Show that $O(f) \cdot O(g) = O(f \cdot g)$ holds for $f, g : \mathbb{N} \to \mathbb{R}_+$.

Remark: For real valued functions $f, g: \mathbb{N} \to \mathbb{R}$ one just substitutes f(n), g(n) with |f(n)|, |g(n)| in the definition of O(g).

Exercise G3 (Algorithms)

- (a) Given two algorithms *A* and *B*:
 - Algorithm A has complexity O(f).
 - Algorithm *B* has complexity *O*(*g*).

We want to look at two new algorithms using *A* and *B*.

Algorithm 1

INPUT : $n \in \mathbb{N}$ for i = 1, ..., 100 do run algorithm A end for for $i = 1, ..., \frac{n}{2}$ do run algorithm B end for

Algorithm 2

if $n \ge 30$ then run algorithm A else run algorithmus B end if

We already know $f \in \Omega(g)$. Determine the best possible estimates for the runtime of both algorithms.

(b) Take a look at algorithm 3 and determine the best possible estimate for its runtime. Justify you answer.

ithm 3	
$UT: n \in \mathbb{N}$	
= n	
le m > 1 do	
or $j = 1,, \frac{n}{2}$ do	
$a=3 \cdot b$	
c = a + b	
nd for	
$\mathbf{n} = \frac{1}{2} \cdot \mathbf{m}$	
while	

Exercise G4 (Sets) Order the functions

$$n^2$$
, \sqrt{n} , $n!$, n^n , n

by their complexity. Start with lowest complexity and use the *o*-notation. Determine n_0 dependend on c > 0 in every of those cases, too.

Remark:

$$f \in o(g) : \iff \forall c > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : 0 \le f(n) < cg(n)$$

Homework

Exercise H4 (Asymptotics)

- (a) Prove that for $r_1, r_2 \in \mathbb{R}_+$ we have $n^{r_1} \in O(n^{r_2})$ and $r_1^n \in O(r_2^n)$ iff $r_1 \leq r_2$.
- (b) Prove the following statements for functions $f, t : \mathbb{N} \to \mathbb{R}$:
 - i. $O(f) + O(f) \subseteq O(f)$.
 - ii. $O(f) \cdot O(t) \subseteq O(f \cdot t)$.
 - iii. $\max\{f, t\} \in \Theta(f + t)$ for $f, t \ge 0$.

Exercise H5 (A sorting algorithm)

The algorithm SortList sorts a sequence of numbers in ascending order.

(10 points)

(14 points)

Algorithm 4 SortList(*list*)

INPUT: sequence of numbers, $list = a_1, ..., a_n, a_i \in \mathbb{N}$ if n <=1 then return listelse $leftlist = a_1, ..., a_{\lceil \frac{n}{2} \rceil}$ $rightlist = a_{\lceil \frac{n}{2} \rceil+1}, ..., a_n$ return Sort(SortList(*lelftlist*),SortList(*rightlist*)) end if

Algorithm 5 Sort(rightlist, leftlist)

INPUT: two sequences of numbers:
$rightlist = a_1,, a_l, leftlist = b_1,, b_k, a_i, b_i \in \mathbb{N}$
newlist
while rightlist and leftlist not empty do
if first element of <i>leftlist</i> <= first element of <i>rightlist</i> then
append first element of <i>leftlist</i> to <i>newlist</i> and delete it from <i>leftlist</i>
else
append first element of rightlist to newlist and delete it from rightlist
end if
end while
while <i>leftlist</i> not empty do
append first element of <i>leftlist</i> to <i>newlist</i> and delete it from <i>leftlist</i>
end while
while <i>rightlist</i> not empty do
append first element of rightlist to newlist and delete it from leftlist
end while
return <i>newlist</i>

- (a) Sort the sequence 9, 10, 7, 3, 1, 2, 12, 9, 23 in ascending order by using the algorithm *SortList*. Make sure to include detailed steps for the algorithm in your solution to indicate that you understand how it works.
- (b) What is the runtime of the algorithm *SortList*?

Exercise H6

Given algorithm 6. What does the algorithm? Determine its runtime.

(6 points)

Algorithm 6	
INPUT : $n \in \mathbb{N}$	
K1 = 2;	
K2 = n;	
while $K2 > K1$ do	
K2 = n/K1	
if $\lceil K2 \rceil == K2$ then	
return K1	
else	
K1=K1+1	
end if	
end while	
return 0	