Algorithmic
 Discrete Mathematics
 2. Exercise Sheet

Department of Mathematics
SS 2012
PD Dr. Ulf Lorenz
2. and 3. May 2012

Dipl.-Math. David Meffert
Version of April 26, 2012

Groupwork

Exercise G1 (Master-Theorem)
Determine, if possible, fixed bounds for the complexities of the recurrences
(a) $T(n)=4 T\left(\frac{n}{2}\right)+n^{3}$,
(b) $T(n)=4 T\left(\frac{n}{2}\right)+n$,
(c) $T(n)=4 T\left(\frac{n}{2}\right)+n^{2} \log n$,
(d) $T(n)=4 T\left(\frac{n}{2}\right)+n^{2}$.

Hint:

Exercise G2 (Complexity)

(a) Let $f, t: \mathbb{N} \rightarrow \mathbb{R}$ be functions with $f \in O(t)$. Prove $O(f)+O(t) \subseteq O(t)$ and $O(f)+O(f) \subseteq O(t)$.
(b) Does $3^{3+n} \in O\left(3^{n}\right)$ hold?
(c) Does $3^{3 n} \in O\left(3^{n}\right)$ hold?
(d) Show that $O(f) \cdot O(g)=O(f \cdot g)$ holds for $f, g: \mathbb{N} \rightarrow \mathbb{R}_{+}$.

Remark: For real valued functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$ one just substitutes $f(n), g(n)$ with $|f(n)|,|g(n)|$ in the definition of $O(g)$.

Exercise G3 (Algorithms)
(a) Given two algorithms A and B :

- Algorithm A has complexity $O(f)$.
- Algorithm B has complexity $O(g)$.

We want to look at two new algorithms using A and B.

```
Algorithm 1
    INPUT : }n\in\mathbb{N
    for }i=1,\ldots,100 d
        run algorithm A
    end for
    for i=1,\ldots, \frac{n}{2}}\mathrm{ do
        run algorithm B
    end for
```

```
Algorithm 2
    if \(n \geq 30\) then
        run algorithm \(A\)
    else
        run algorithmus B
    end if
```

We already know $f \in \Omega(g)$. Determine the best possible estimates for the runtime of both algorithms.
(b) Take a look at algorithm 3 and determine the best possible estimate for its runtime. Justify you answer.

```
Algorithm 3
    INPUT : \(\mathrm{n} \in \mathbb{N}\)
    \(\mathrm{m}=\mathrm{n}\)
    while \(m>1\) do
        for \(\mathrm{j}=1, \ldots, \frac{n}{2}\) do
            \(\mathrm{a}=3 \cdot \mathrm{~b}\)
            \(c=a+b\)
        end for
        \(\mathrm{m}=\frac{1}{2} \cdot \mathrm{~m}\)
    end while
```


Exercise G4 (Sets)

Order the functions

$$
n^{2}, \sqrt{n}, n!, n^{n}, n
$$

by their complexity. Start with lowest complexity and use the o-notation. Determine n_{0} dependend on $c>0$ in every of those cases, too.

Remark:

$$
f \in o(g): \Longleftrightarrow \forall c>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: 0 \leq f(n)<c g(n)
$$

Homework

Exercise H4 (Asymptotics)
(a) Prove that for $r_{1}, r_{2} \in \mathbb{R}_{+}$we have $n^{r_{1}} \in O\left(n^{r_{2}}\right)$ and $r_{1}^{n} \in O\left(r_{2}^{n}\right)$ iff $r_{1} \leq r_{2}$.
(b) Prove the following statements for functions $f, t: \mathbb{N} \rightarrow \mathbb{R}$:
i. $O(f)+O(f) \subseteq O(f)$.
ii. $O(f) \cdot O(t) \subseteq O(f \cdot t)$.
iii. $\max \{f, t\} \in \Theta(f+t)$ for $f, t \geq 0$.

Exercise H5 (A sorting algorithm)
The algorithm SortList sorts a sequence of numbers in ascending order.

```
Algorithm 4 SortList(list)
    INPUT: sequence of numbers, list \(=a_{1}, \ldots, a_{n}, a_{i} \in \mathbb{N}\)
    if \(n<=1\) then
        return list
    else
        leftlist \(=a_{1}, \ldots, a_{\left\lceil\frac{n}{2}\right\rceil}\)
        rightlist \(=a_{\left\lceil\frac{n}{2} 1+1\right.}, \ldots, a_{n}\)
        return Sort(SortList(lelftlist),SortList(rightlist))
    end if
```

```
Algorithm 5 Sort(rightlist, leftlist)
    INPUT: two sequences of numbers:
    rightlist \(=a_{1}, \ldots, a_{l}\), leftlist \(=b_{1}, \ldots, b_{k}, a_{i}, b_{i} \in \mathbb{N}\)
    newlist
    while rightlist and leftlist not empty do
        if first element of leftlist \(<=\) first element of rightlist then
            append first element of leftlist to newlist and delete it from leftlist
        else
            append first element of rightlist to newlist and delete it from rightlist
        end if
    end while
    while leftlist not empty do
        append first element of leftlist to newlist and delete it from leftlist
    end while
    while rightlist not empty do
        append first element of rightlist to newlist and delete it from leftlist
    end while
    return newlist
```

(a) Sort the sequence $9,10,7,3,1,2,12,9,23$ in ascending order by using the algorithm SortList. Make sure to include detailed steps for the algorithm in your solution to indicate that you understand how it works.
(b) What is the runtime of the algorithm SortList?

Exercise H6

Given algorithm 6. What does the algorithm? Determine its runtime.

```
Algorithm 6
    INPUT : \(n \in \mathbb{N}\)
    \(\mathrm{K} 1=2\);
    \(\mathrm{K} 2=\mathrm{n}\);
    while K2 > K1 do
        \(\mathrm{K} 2=\mathrm{n} / \mathrm{K} 1\)
        if \(\lceil K 2\rceil==K 2\) then
            return K1
        else
            \(\mathrm{K} 1=\mathrm{K} 1+1\)
        end if
    end while
    return 0
```

