Anmerkungen zu Lösungen der ersten Klausur

Aufgabe 2

Durch (a-1) (respektive (a-2)) für beliebiges $a \in \mathbb{R}$ zu teilen ist nur sinnvoll, wenn vorher der Fall a=1 (respektive a=2) gesondert behandelt wurde.

Aufgabe 3

Die Aufgabe war es, eine Gesamtmatrix für die *nacheinander* auszuführenden Operationen anzugeben:

- erst an der x + y = 0 Ebene spiegeln,
- \bullet dann auf die z=0 Ebene projizieren und
- abschließend an der x-Achse um $\alpha = 45^{\circ}$ drehen

Herangehensweise: Eine mögliche Herleitung der Einzelmatrizen ist es, sich den Effekt (bspw. Spiegelung an einer Ebene) durch Anwendung der Matrix A_1 auf die Vektoren der Standardbasis des (hier) \mathbb{R}^3 klarzumachen. Die daraus erhaltenen Vektoren bilden dann die Spalten der gesuchten Matrix A_1 . Im Falle der Spiegelung wäre das (ggf. im zweidimensionalen klarmachen, warum das so ist):

$$A_1e_1 = -e_2, \quad A_1e_2 = -e_1, \quad A_1e_3 = e_3$$

Desweiteren: Sind A_1, A_2 und A_3 drei nacheinander auszuführende Drehungen/Spiegelungen/..., dann sind diese in der Reihenfolge

$$A = A_3 \cdot A_2 \cdot A_1$$

auszuführen, denn

$$Ax = A_3 \left(A_2 \left(A_1 x \right) \right)$$

und Matrixmultiplikation ist im Allgemeinen *nicht* kommutativ.

Aufgabe 4

Sarrus ist nicht immer die beste/einfachste Möglichkeit die Determinante auszurechnen. Laplace angewandt auf eine Zeile/Spalte, die bis auf einen Eintrag Null ist, liefert hier beinahe direkt die Faktorisierung der Determinante. Konkret an der Matrix

$$A = \begin{pmatrix} 5 & 2 & 0 \\ 0 & 1 & 8 \\ 0 & -1 & 7 \end{pmatrix}$$

aus der Klausur hieße das:

• Sarrus:

$$Det(A - \lambda I_3) = (5 - \lambda) \cdot (1 - \lambda) \cdot (7 - \lambda) + 2 \cdot 8 \cdot 0 + 0 \cdot 0 \cdot (-1) - 0 \cdot (1 - \lambda) \cdot 0 - (5 - \lambda) \cdot 8 \cdot (-1) - 0 \cdot 2 \cdot (7 - \lambda)$$

In diesem konkreten Fall war aber selbst bei Anwendung von Sarrus zu erkennen (konzentrierte und korrekte Multiplikation der Matrixeinträge vorausgesetzt), dass $5-\lambda$ ausgeklammert werden kann und damit ein quadratisches Polynom verbleibt, für welche die Nullstellen einfach zu berechnen sind.

• Laplace nach erster Spalte entwickelt:

$$Det(A - \lambda I_3) = (5 - \lambda)([1 - \lambda] \cdot [7 - \lambda] + 8)$$

Aufgabe 5

Die Aufgabe: Der \mathbb{R} -Vektorraum $V:=M_{n\times n}(\mathbb{R})$ wurde mit der Abbildung

$$\langle A, B \rangle := \operatorname{Spur}(AB^{\mathrm{T}})$$

versehen, für die die Skalarprodukteigenschaften nachzurechnen waren. Kein Beweis ist es hier schlicht

$$\operatorname{Spur}((\lambda A + \mu B)C^{\mathrm{T}}) = \lambda \operatorname{Spur}(AC^{\mathrm{T}}) + \mu \operatorname{Spur}(BC^{\mathrm{T}})$$

zu schreiben — denn das war die zu zeigende Aussage, nicht mehr. Vielmehr muss hier etwas folgender Art stehen:

$$Spur((\lambda A + \mu B)C^{T}) = \sum_{i=j}^{n} \sum_{k=1}^{n} (\lambda a_{ik} c_{jk} + \mu b_{ik} c_{jk}) = \sum_{i=j}^{n} \sum_{k=1}^{n} (\lambda a_{ik} c_{jk}) + \sum_{i=j}^{n} \sum_{k=1}^{n} (\mu b_{ik} c_{jk})$$
$$= \lambda Spur(AC^{T}) + \mu Spur(BC^{T})$$

Wichtig: Matrixmultiplikation ist nicht komponentenweise:

$$\operatorname{Spur}(A \cdot B^{\mathrm{T}}) = \operatorname{Spur}\left(\left(\sum_{k=1}^{n} a_{ik} b_{jk}\right)_{ij}\right) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ik} \neq \sum_{i=1}^{n} a_{ii} b_{ii}.$$

Insbesondere ist $\operatorname{Spur}(A \cdot A^{\mathrm{T}}) \neq \sum_{i=1}^{n} a_{ii}^2$, sondern $\operatorname{Spur}(A \cdot A^{\mathrm{T}}) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}^2$.

Jede Basis \mathcal{B} des Vektorraum $V_n := M_{n \times n}(\mathbb{R})$ besteht aus $n \cdot n$ -vielen $n \times n$ -Matrizen. Die kanonische Basis des V_2 ist beispielsweise

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Für die Norm gilt $||A||^2 = \langle A, A \rangle$.

Aufgabe 6

 λ ist ein Eigenwert einer quadratischen (stochastischen) Matrix Pgenau dann, wenn es einen von Null verschiedenen Vektor $v\neq\vec{0}$ gibt, so dass

$$Av = \lambda v.$$

Hinschreiben der Koeffizienten von Av und von λv liefert, zusammen mit den Eigenschaften von P, dann einen ganz guten Kandidaten für v.

Alternativ: λ ist Eigenwert genau dann, wenn $\mathrm{Det}(A-\lambda I_n)=0$. Wie sehen die Einträge von $A-\lambda I_n$ aus? Wie lässt sich eine Spalte zu Null kombinieren — und was würde daraus für die Determinante folgen?