Analysis III - Complex Analysis Hints for solution for the 8. Exercise Sheet

Department of Mathematics

WS 11/12
Prof. Dr. Burkhard Kümmerer
February 7, 2012
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (A strange Laurent series expansion)
Consider the following Laurent series expansion of the zero function:

$$
\begin{aligned}
0 & =\frac{1}{z-1}+\frac{1}{1-z}=\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}}+\frac{1}{1-z} \\
& =\sum_{n=1}^{\infty} \frac{1}{z^{n}}+\sum_{n=0}^{\infty} z^{n}=\sum_{n=-\infty}^{\infty} z^{n} .
\end{aligned}
$$

This contradicts the uniqueness of the Laurent series expansion, doesn't it?
Hints for solution: The identity above only holds on $\{z \in \mathbb{C}:|z|<1\} \cap\{z \in \mathbb{C}:|z|>1\}=\emptyset$. Thus the epxansion above is meaningless and doesn't contradict the uniqueness of the Laurent series expansion.

Exercise G2 (Some Laurent series expansions)
Consider the holomorphic function $f: \mathbb{C} \backslash\{1,3\} \rightarrow \mathbb{C}, f(z)=\frac{2}{z^{2}-4 z+3}$. Use the partial fraction decomposition

$$
f(z)=\frac{1}{1-z}+\frac{1}{z-3}
$$

to expand f on the following annuli into a Laurent series in $z_{0}=0$:

$$
R_{1}:=\{z \in \mathbb{C}: 0<|z|<1\}, \quad R_{2}:=\{z \in \mathbb{C}: 1<|z|<3\}, \quad R_{3}:=\{z \in \mathbb{C}: 3<|z|<42\} .
$$

Hints for solution: We use the expansion into the geometric series. On R_{1} we get

$$
\frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k} \quad \text { and } \quad \frac{1}{z-3}=-\frac{1}{3} \cdot \frac{1}{1-\frac{z}{3}}=-\sum_{k=0}^{\infty} \frac{1}{3^{k+1}} z^{k} .
$$

This leads to

$$
f(z)=\sum_{k=0}^{\infty}\left(1-\frac{1}{3^{k+1}}\right) \cdot z^{k} .
$$

Of course we get the power series expansion of f which converges on $K_{1}(0)$.
For $|z|>1$ we use

$$
\frac{1}{1-z}=-\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}}=-\sum_{k=1}^{\infty} z^{-k} .
$$

This leads on R_{2} to the Laurent series expansion

$$
f(z)=-\sum_{k=1}^{\infty} z^{-k}-\sum_{k=0}^{\infty} \frac{1}{3^{k+1}} z^{k} .
$$

The same procedure for $|z|>3$ leads to

$$
f(z)=\sum_{k=2}^{\infty}\left(3^{k-1}-1\right) \cdot z^{-k}
$$

on R_{3}. Of course this series converges on $K_{3, \infty}$.

Exercise G3 (On residues of holomorphic functions)
Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function and assume there is an $r>0$ such that $K_{r, 0}\left(z_{0}\right) \subseteq \Omega$ where $K_{r, 0}\left(z_{0}\right):=\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<r\right\}$.
Remember that the residue of f in z_{0} is defined by $\operatorname{Res}\left(f, z_{0}\right):=a_{-1}$ where $\sum_{k=-\infty}^{\infty} a_{k} \cdot z^{k}$ is the Laurent series expansion of f converging in $K_{r, 0}\left(z_{0}\right)$ to f.
(a) Let $n \in \mathbb{N}$ be a natural number such that $z \rightarrow\left(z-z_{0}\right)^{n} \cdot f(z)$ has a holomorphic extension on $\Omega \cup\left\{z_{0}\right\}$ (e. g. if f has in z_{0} a pole of order at most n). Show:

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left(\left(z-z_{0}\right)^{n} \cdot f(z)\right) .
$$

(b) Let $g, h: \Omega \cup\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be holomorphic. Assume that h has in z_{0} a zero of order 1 and set $f(z):=\frac{g(z)}{h(z)}$. Show:

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

(c) Calculate the following integrals:
(i) $\int_{C_{1}(0)} \frac{e^{z}}{\sin (z)} d z$,
(ii) $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x, \quad \int_{C_{1}(0)} \frac{1}{|z|} d z$.

Hints for solution:

(a) By assumption f has a Laurent series expansion $f(z)=\sum_{k=-n}^{\infty} a_{k} \cdot\left(z-z_{0}\right)^{k}$. This means

$$
\left(z-z_{0}\right)^{n} \cdot f(z)=\sum_{k=0}^{\infty} c_{k-n} \cdot\left(z-z_{0}\right)^{k}
$$

The right hand side is a power series converging on $K_{r}\left(z_{0}\right)$. Thus the ($n-1$)-th derivative of this function in z_{0} is given by $(n-1)!\cdot a_{-1}=(n-1)!\cdot \operatorname{Res}\left(f, z_{0}\right)$. This proves the claim.
(b) From (a) follows:

$$
\begin{aligned}
\operatorname{Res}\left(f, z_{0}\right) & =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \cdot f(z)=\lim _{z \rightarrow z_{0}} g(z) \cdot \frac{z-z_{0}}{h(z)-h\left(z_{0}\right)} \\
& =\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
\end{aligned}
$$

(c) Since $\operatorname{Res}\left(\frac{\exp }{\sin }, 0\right)=\frac{\exp (0)}{\cos (0)}=1$ we get $\int_{C_{1}(0)} \frac{e^{z}}{\sin (z)} d z=2 \pi i$.

Since

$$
\sum_{z_{0} \in \mathbb{C}: \operatorname{Re}\left(z_{0}\right)>0} \operatorname{Res}\left(z \rightarrow \frac{1}{\left(1+z^{2}\right)^{2}}, z_{0}\right)=\frac{-i}{4}
$$

and $\operatorname{deg}\left(\left(1+z^{2}\right)^{2}\right)-\operatorname{deg}(1) \geq 2$ we get

$$
\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x=\int_{C_{1}(i)} \frac{1}{\left(1+z^{2}\right)^{2}} d z=\frac{\pi}{2} .
$$

Since the function $z \rightarrow \frac{1}{|z|}$ is not holomorphic, we can't apply integral formulas from complex analysis. But we can calculate the last integral elementary:

$$
\int_{C_{1}(0)} \frac{1}{|z|} d z=\int_{C_{1}(0)} 1 d z=0
$$

Exercise G4 (Singularities)
If $f: \Omega \rightarrow \mathbb{C}$ is holomorphic we call a point $z_{0} \in \mathbb{C}$ an isolated singularity of f if $z_{0} \notin \Omega$ and $K_{r, 0}\left(z_{0}\right)=\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<r\right\} \subseteq \Omega$ for some $r>0$. We want to discuss three types of singularities:

An isolated singularity z_{0} of f is called a removable singularity if f has a holomorphic extension on $\Omega \cup\left\{z_{0}\right\}$.
An isolated singularity z_{0} of f is called a pole if z_{0} is not a removable singularity of f and there exists a $n>0$ such that $z \rightarrow\left(z-z_{0}\right)^{n} \cdot f(z)$ has a removable singularity in z_{0}. The smallest number $n \in \mathbb{N}$ with this property is called the order of the pole.
An isolated singularity z_{0} of f is called an essential singularity if z_{0} is neither a removable singularity nor a pole.
(a) Find an example for each kind of an isolated singularity.
(b) Show: Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and z_{0} be an isolated singularity. Then there are equivalent:
(i) The singularity z_{0} is removable.
(ii) There is a power series expansion of f in z_{0} converging on $K_{r}\left(z_{0}\right)$.
(c) Show: Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and $z_{0} \in \Omega$ be an isolated singularity. Then there are equivalent:
(i) The singularity z_{0} is a pole.
(ii) The principal part of the Laurent series expansion of f in z_{0} on $K_{r, 0}\left(z_{0}\right)$ is not trivial and all but finitely many coefficients vanish.
(d) Consider the holomorphic functions

$$
f(z)=\frac{\sin (z)}{z}, \quad g(z)=\sin \left(\frac{1}{z}\right), \quad h(z)=\frac{1}{\sin (z)}
$$

on there natural domains. Each of these functions have in $z_{0}=0$ an isolated singularity. Classify the isolated singularities. Hint: You could use the result of (f).
(e) In excercise G2 you determined some Laurent series in z_{0} with infinite principal part. Does this mean the function f has an essential singularity in $z_{0}=0$?
(f) Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and $z_{0} \in \Omega$ be a pole of f. Then $\lim _{z \rightarrow z_{0}}\left|f\left(z_{0}\right)\right|=\infty$.
(g) The function $f(z):=\exp \left(-\frac{1}{z^{2}}\right)$ has an essential singularity in $z_{0}=0$. Show: For each $\omega \in \mathbb{C}$ there is a null sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ with $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\omega$.
The phenomenon in (g) is typical for essential singularities cf. the Casorati-Weierstrass Theorem or - a much stronger fact - the Big Picard Theorem in the literature.

Hints for solution:

(a) Removable: $f(z):=\frac{z}{z}$.

Pole of order $n \in \mathbb{N}: g(z)=\frac{1}{z^{n}}$.
Essential singularity: $h(z):=\exp \left(\frac{1}{z^{42}}\right)$.
(b) If f has a removable singularity in z_{0} we know f determines a unique holomorphic extension admitting a power series converging on a small open disc around the singularity.
On the opposite if f has a power series expansion in z_{0} then there is a holomorphic extension of f on a small disc around z_{0} given by the series.
(c) If z_{0} is a pole of order n then $\left(z-z_{0}\right)^{n} f(z)$ has a removable singularity and thus a power series expansion. Dividing by $\left(z-z_{0}\right)^{n}$ leads to the Laurent series expansion of f in z_{0} and thus the Laurent series has non trivial and finite principal part.
Conversely if $f(z)=\sum_{k=-n}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ then $\left(z-z_{0}\right)^{n} f(z)$ has a removable singularity in z_{0} by (b).
(d) We give the Laurent series expansions of f and g :

$$
\begin{aligned}
& f(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k} \\
& g(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{-(2 k+1)}
\end{aligned}
$$

Thus f has a removable singularity in $z_{0}=0$ and g has an essential singularity in $z_{0}=0$. For h we consider

$$
H(z):=\frac{z}{\sin (z)}
$$

This function has a removable singularity in $z_{0}=0$ since f has a removable singularity in $z_{0}=0$. This means that h has a pole of order 1 in $z_{0}=0$ or a removable singularity. Since $\lim _{x \in] 0,1], x \rightarrow 0} h(x)=\infty$ we conclude that h has no holomorphic extension in $z_{0}=0$.
Alternatively we can argue that g can't have a removable singularity or a pole at the point $z_{0}=0$: For every $n \in \mathbb{N}$ the function $g_{n}(z):=z^{n} \cdot g(z)$ has infinitely many zeroes in every neighbourhood of $z_{0}=0$. If g_{n} would have a removable singularity the function must be the zero function by the identity theorem. This can't be true.
(e) The expansions in R_{2} and R_{3} are on annuli which are different from $K_{r, 0}\left(z_{0}\right)$. In fact there is no singularity of f in $z_{0}=0$.
(f) Since f has a pole there is a $n \in \mathbb{N}$ such that $\left(z-z_{0}\right)^{n} f(z)$ is bounded on $K_{r}\left(z_{0}\right)$ in both directions. This means there are $c, C \in] 0, \infty[$ with

$$
c \leq|f(z)| \cdot\left|z-z_{0}\right|^{n} \leq C
$$

for all z in a small disc $K_{r}\left(z_{0}\right)$. From this follows the claim:

$$
|f(z)| \geq \frac{c}{\left|z-z_{0}\right|^{\prime}}
$$

(g) Fix $\omega \in \mathbb{C} \backslash\{0\}$. Choose a $z \in \mathbb{C}$ with $|z|>0, \operatorname{Im}(z)>0$ and $e^{z}=\omega$. Since the exponential map is 2π-periodic we also have $e^{z+2 n \pi i}=\omega$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ we choose a number $x_{n} \in \mathbb{C}$ with $x_{n}^{2}=\frac{1}{z+2 n \pi i}$ then $\lim _{n \rightarrow \infty} x_{n}=0$ so we can form the null sequence

$$
z_{n}:=-x_{n}
$$

and get

$$
\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\exp \left((-1)^{2} \frac{1}{\frac{1}{z+2 n \pi i}}\right)=\exp (z+2 n i \pi)=\omega .
$$

For $\omega=0$ choose an arbitrary real null sequence since there is a real continuous extension of $e^{-\frac{1}{x^{2}}}$ on the whole real axis.

