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Exercise G1 (A strange Laurent series expansion)

Consider the following Laurent series expansion of the zero function:

0 =
1

z− 1
+

1

1− z
=

1

z
·

1

1− 1
z

+
1

1− z

=
∞
∑

n=1

1

zn +
∞
∑

n=0

zn =
∞
∑

n=−∞
zn.

This contradicts the uniqueness of the Laurent series expansion, doesn’t it?

Hints for solution: The identity above only holds on {z ∈ C : |z| < 1} ∩ {z ∈ C : |z| > 1} = ;.
Thus the epxansion above is meaningless and doesn’t contradict the uniqueness of the Laurent
series expansion.
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Exercise G2 (Some Laurent series expansions)

Consider the holomorphic function f : C \ {1, 3} → C, f (z) = 2
z2−4z+3

. Use the partial fraction
decomposition

f (z) =
1

1− z
+

1

z− 3

to expand f on the following annuli into a Laurent series in z0 = 0:

R1 := {z ∈ C : 0< |z|< 1}, R2 := {z ∈ C : 1< |z|< 3}, R3 := {z ∈ C : 3< |z|< 42}.

Hints for solution: We use the expansion into the geometric series. On R1 we get

1

1− z
=
∞
∑

k=0

zk and
1

z− 3
=−

1

3
·

1

1− z
3

=−
∞
∑

k=0

1

3k+1
zk.

This leads to

f (z) =
∞
∑

k=0

�

1−
1

3k+1

�

· zk.

Of course we get the power series expansion of f which converges on K1(0).
For |z|> 1 we use

1

1− z
=−

1

z
·

1

1− 1
z

=−
∞
∑

k=1

z−k.

This leads on R2 to the Laurent series expansion

f (z) =−
∞
∑

k=1

z−k −
∞
∑

k=0

1

3k+1
zk.

The same procedure for |z|> 3 leads to

f (z) =
∞
∑

k=2

(3k−1− 1) · z−k

on R3. Of course this series converges on K3,∞.
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Exercise G3 (On residues of holomorphic functions)

Let f : Ω→ C be a holomorphic function and assume there is an r > 0 such that Kr,0(z0) ⊆ Ω
where Kr,0(z0) := {z ∈ C : 0< |z− z0|< r}.
Remember that the residue of f in z0 is defined by Res( f , z0) := a−1 where

∑∞
k=−∞ ak · zk is the

Laurent series expansion of f converging in Kr,0(z0) to f .

(a) Let n ∈ N be a natural number such that z → (z − z0)n · f (z) has a holomorphic extension
on Ω∪ {z0} (e. g. if f has in z0 a pole of order at most n). Show:

Res( f , z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1

�

(z− z0)
n · f (z)

�

.

(b) Let g, h : Ω ∪ {z0} → C be holomorphic. Assume that h has in z0 a zero of order 1 and set
f (z) := g(z)

h(z)
. Show:

Res( f , z0) =
g(z0)
h′(z0)

.

(c) Calculate the following integrals:

(i)

∫

C1(0)

ez

sin(z)
dz, (ii)

∫ ∞

−∞

1

(x2+ 1)2
d x ,

∫

C1(0)

1

|z|
dz.

Hints for solution:

(a) By assumption f has a Laurent series expansion f (z) =
∑∞

k=−n ak · (z− z0)k. This means

(z− z0)
n · f (z) =

∞
∑

k=0

ck−n · (z− z0)
k.

The right hand side is a power series converging on Kr(z0). Thus the (n− 1)-th derivative
of this function in z0 is given by (n− 1)! · a−1 = (n− 1)! ·Res( f , z0). This proves the claim.

(b) From (a) follows:

Res( f , z0) = lim
z→z0
(z− z0) · f (z) = lim

z→z0
g(z) ·

z− z0

h(z)− h(z0)

=
g(z0)
h′(z0)

.

(c) Since Res
�exp

sin
, 0
�

= exp(0)
cos(0)

= 1 we get
∫

C1(0)
ez

sin(z)
dz = 2πi.

Since
∑

z0∈C:Re(z0)>0

Res
�

z→
1

(1+ z2)2
, z0

�

=
−i

4

and deg((1+ z2)2)− deg(1)≥ 2 we get
∫ ∞

−∞

1

(1+ x2)2
d x =

∫

C1(i)

1

(1+ z2)2
dz =

π

2
.

Since the function z → 1
|z| is not holomorphic, we can’t apply integral formulas from com-

plex analysis. But we can calculate the last integral elementary:
∫

C1(0)

1

|z|
dz =

∫

C1(0)

1 dz = 0.
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Exercise G4 (Singularities)

If f : Ω → C is holomorphic we call a point z0 ∈ C an isolated singularity of f if z0 /∈ Ω and
Kr,0(z0) = {z ∈ C : 0 < |z − z0| < r} ⊆ Ω for some r > 0. We want to discuss three types of
singularities:

An isolated singularity z0 of f is called a removable singularity if f has a holomorphic extension
on Ω∪ {z0}.
An isolated singularity z0 of f is called a pole if z0 is not a removable singularity of f and there
exists a n > 0 such that z → (z − z0)n · f (z) has a removable singularity in z0. The smallest
number n ∈ N with this property is called the order of the pole.
An isolated singularity z0 of f is called an essential singularity if z0 is neither a removable
singularity nor a pole.

(a) Find an example for each kind of an isolated singularity.

(b) Show: Let f : Ω → C be holomorphic and z0 be an isolated singularity. Then there are
equivalent:
(i) The singularity z0 is removable.

(ii) There is a power series expansion of f in z0 converging on Kr(z0).
(c) Show: Let f : Ω→ C be holomorphic and z0 ∈ Ω be an isolated singularity. Then there are

equivalent:
(i) The singularity z0 is a pole.

(ii) The principal part of the Laurent series expansion of f in z0 on Kr,0(z0) is not trivial and
all but finitely many coefficients vanish.

(d) Consider the holomorphic functions

f (z) =
sin(z)

z
, g(z) = sin

�

1

z

�

, h(z) =
1

sin(z)

on there natural domains. Each of these functions have in z0 = 0 an isolated singularity.
Classify the isolated singularities. Hint: You could use the result of (f).

(e) In excercise G2 you determined some Laurent series in z0 with infinite principal part. Does
this mean the function f has an essential singularity in z0 = 0?

(f) Let f : Ω→ C be holomorphic and z0 ∈ Ω be a pole of f . Then limz→z0
| f (z0)|=∞.

(g) The function f (z) := exp
�

− 1
z2

�

has an essential singularity in z0 = 0. Show: For each
ω ∈ C there is a null sequence (zn)n∈N with limn→∞ f (zn) =ω.

The phenomenon in (g) is typical for essential singularities cf. the Casorati-Weierstrass Theorem
or – a much stronger fact – the Big Picard Theorem in the literature.

Hints for solution:

(a) Removable: f (z) := z
z
.

Pole of order n ∈ N: g(z) = 1
zn .

Essential singularity: h(z) := exp
�

1
z42

�

.

(b) If f has a removable singularity in z0 we know f determines a unique holomorphic exten-
sion admitting a power series converging on a small open disc around the singularity.
On the opposite if f has a power series expansion in z0 then there is a holomorphic exten-
sion of f on a small disc around z0 given by the series.
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(c) If z0 is a pole of order n then (z − z0)n f (z) has a removable singularity and thus a power
series expansion. Dividing by (z − z0)n leads to the Laurent series expansion of f in z0 and
thus the Laurent series has non trivial and finite principal part.
Conversely if f (z) =

∑∞
k=−n ak(z− z0)k then (z− z0)n f (z) has a removable singularity in z0

by (b).

(d) We give the Laurent series expansions of f and g:

f (z) =
∞
∑

k=0

(−1)k

(2k+ 1)!
z2k

g(z) =
∞
∑

k=0

(−1)k

(2k+ 1)!
z−(2k+1)

Thus f has a removable singularity in z0 = 0 and g has an essential singularity in z0 = 0.
For h we consider

H(z) :=
z

sin(z)
.

This function has a removable singularity in z0 = 0 since f has a removable singularity in
z0 = 0. This means that h has a pole of order 1 in z0 = 0 or a removable singularity. Since
limx∈]0,1], x→0 h(x) =∞ we conclude that h has no holomorphic extension in z0 = 0.
Alternatively we can argue that g can’t have a removable singularity or a pole at the point
z0 = 0: For every n ∈ N the function gn(z) := zn · g(z) has infinitely many zeroes in every
neighbourhood of z0 = 0. If gn would have a removable singularity the function must be
the zero function by the identity theorem. This can’t be true.

(e) The expansions in R2 and R3 are on annuli which are different from Kr,0(z0). In fact there
is no singularity of f in z0 = 0.

(f) Since f has a pole there is a n ∈ N such that (z − z0)n f (z) is bounded on Kr(z0) in both
directions. This means there are c, C ∈]0,∞[ with

c ≤ | f (z)| · |z− z0|n ≤ C

for all z in a small disc Kr(z0). From this follows the claim:

| f (z)| ≥
c

|z− z0|n
.

(g) Fix ω ∈ C \ {0}. Choose a z ∈ C with |z| > 0, Im(z) > 0 and ez =ω. Since the exponential
map is 2π-periodic we also have ez+2nπi = ω for each n ∈ N. For each n ∈ N we choose a
number xn ∈ C with x2

n =
1

z+2nπi
then limn→∞ xn = 0 so we can form the null sequence

zn :=−xn

and get

lim
n→∞

f (zn) = exp

 

(−1)2
1
1

z+2nπi

!

= exp(z+ 2niπ) =ω.

For ω = 0 choose an arbitrary real null sequence since there is a real continuous extension

of e−
1

x2 on the whole real axis.
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