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Exercise G1 (A strange Laurent series expansion)

Consider the following Laurent series expansion of the zero function:

1 1 1 1 1
0 = z—1+1—z:;.1—§+1—z
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This contradicts the uniqueness of the Laurent series expansion, doesn’t it?

Hints for solution: The identity above only holdson {z € C: |z| <1}n{zeC: |z| > 1} =0.
Thus the epxansion above is meaningless and doesn’t contradict the uniqueness of the Laurent

series expansion.




Exercise G2 (Some Laurent series expansions)

Consider the holomorphic function f : C\ {1,3} = C, f(z) =
decomposition

= 4 —- Use the partial fraction

Z) = +
fz) l-2 2-3
to expand f on the following annuli into a Laurent series in z, = 0:

Ri:={z€C: 0<|z|<1}, Ry:={z€C: 1<|2[<3}, Ry:={ze€C: 3<|z| <42}

Hints for solution: We use the expansion into the geometric series. On R; we get

z
k=0 3

This leads to
k
(Z) :E: ( 3k+1) z.

Of course we get the power series expansion of f which converges on K;(0).
For |z| > 1 we use
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This leads on R, to the Laurent series expansion

o0 o0 1
e Y I
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The same procedure for |z| > 3 leads to
o0
f@=) @ -1
k=2

on Rj. Of course this series converges on K .




Exercise G3 (On residues of holomorphic functions)

Let f :  — C be a holomorphic function and assume there is an r > 0 such that K, ((z,) <
where K, (z9) :={z€C: 0 <[z —z| <T}.
Remember that the residue of f in z, is defined by Res(f, z,) := a_; where Zio:_oo a; -z~ is the
Laurent series expansion of f converging in K,.,(zo) to f.
(a) Let n € N be a natural number such that z — (z — z,)" - f (2) has a holomorphic extension
on QU {z,} (e. g. if f has in 2, a pole of order at most n). Show:
n—1
. L
oD m e (G =2 £(2)).
(b) Let g,h: QU {2y} — C be holomorphic. Assume that h has in 2z, a zero of order 1 and set

.— 8(=) .
f(z):= POk Show:

Res(f,2zp) =

g(20)
H(z)

Res(f,zy) =

(c) Calculate the following integrals:

(')J “ 4 (")foo L f L
i , z, ii ——dx, —dz.
¢1(0 Sin(2) o (x*+1)2 oL

Hints for solution:

(a) By assumption f has a Laurent series expansion f(z) = Z;O:_n a; - (z — 2o). This means

z—20)" f(2) = ) e (3 —20)"
k=0

The right hand side is a power series converging on K,.(z,). Thus the (n — 1)-th derivative
of this function in g is given by (n — 1)!-a_; = (n — 1)! - Res(f, 2y). This proves the claim.
(b) From (a) follows:

Res(fz) = lm(s —20) f(s) = lim g(&) 1
0 22 _ 0

_ g(2o)

h(z)

. exp __exp(0) _ e _ .
(c) Since Res ( - ,O) = os(0) — 1 we get fcl(o) Sin(Z)dz = 27i.

1 —1
R _ e
I (R T,

20€C:Re(zp)>0
and deg((1 +22)?) — deg(1) > 2 we get

J“’ 1 p J 1 g
———dx = /= az = —.
o (T +x2)? 1) (1+22)? 2

Since the function z — ﬁ is not holomorphic, we can’t apply integral formulas from com-

plex analysis. But we can calculate the last integral elementary:

1
J —dz = J 1dz=0.
ao 2 C1(0)

Since




Exercise G4 (Singularities)

If f : Q — C is holomorphic we call a point 2, € C an isolated singularity of f if z, ¢ Q and
Kio(z)) ={2€C: 0<|z—2z) <r} < Q for some r > 0. We want to discuss three types of
singularities:
An isolated singularity z, of f is called a removable singularity if f has a holomorphic extension
on QU {z,}.
An isolated singularity z, of f is called a pole if %, is not a removable singularity of f and there
exists a n > 0 such that 2 — (2 — 25)" - f(2) has a removable singularity in z,. The smallest
number n € N with this property is called the order of the pole.
An isolated singularity z, of f is called an essential singularity if z, is neither a removable
singularity nor a pole.
(a) Find an example for each kind of an isolated singularity.
(b) Show: Let f : 2 — C be holomorphic and z, be an isolated singularity. Then there are
equivalent:
(i) The singularity z, is removable.
(ii) There is a power series expansion of f in g, converging on K, (z).
(c) Show: Let f : Q — C be holomorphic and z, € 2 be an isolated singularity. Then there are
equivalent:
(i) The singularity z, is a pole.
(ii) The principal part of the Laurent series expansion of f in z, on K, (z,) is not trivial and
all but finitely many coefficients vanish.

(d) Consider the holomorphic functions

sin(z) (1
F@ =2 g =sin(;), A=

P ~ sin(z)

on there natural domains. Each of these functions have in z, = 0 an isolated singularity.
Classify the isolated singularities. Hint: You could use the result of (f).

(e) In excercise G2 you determined some Laurent series in z, with infinite principal part. Does
this mean the function f has an essential singularity in z, = 0?

(f) Let f : Q — C be holomorphic and 2, € Q2 be a pole of f. Then lim,_,, |f(z,)| = oco.
(g) The function f(z) := exp (—Ziz) has an essential singularity in z, = 0. Show: For each
w € C there is a null sequence (z,,),ey With lim,_,  f(2,) = w.

The phenomenon in (g) is typical for essential singularities cf. the Casorati-Weierstrass Theorem
or — a much stronger fact — the Big Picard Theorem in the literature.

Hints for solution:

(a) Removable: f(z):= g
Pole of order n € N: g(z) = zin
Essential singularity: h(z) := exp (Z%) .

(b) If f has a removable singularity in 2z, we know f determines a unique holomorphic exten-
sion admitting a power series converging on a small open disc around the singularity.

On the opposite if f has a power series expansion in z, then there is a holomorphic exten-
sion of f on a small disc around 2, given by the series.




(o)

(d)

(e)

®

(g)

If 2, is a pole of order n then (z — 27)"f () has a removable singularity and thus a power
series expansion. Dividing by (z — 2z,)" leads to the Laurent series expansion of f in z, and
thus the Laurent series has non trivial and finite principal part.

Conversely if f(z) = Z,ii_n a,(z — 2¢)* then (z — 2,)"f (2) has a removable singularity in z,
by (b).

We give the Laurent series expansions of f and g:
) = 3

Thus f has a removable singularity in 2z, = 0 and g has an essential singularity in z, = 0.
For h we consider

H(z) := SnG)’
This function has a removable singularity in z, = O since f has a removable singularity in
2o = 0. This means that h has a pole of order 1 in 2, = 0 or a removable singularity. Since
lim, 10 17, x—0 h(x) = 0o we conclude that h has no holomorphic extension in z, = 0.
Alternatively we can argue that g can’t have a removable singularity or a pole at the point
2o = 0: For every n € N the function g,(z) := 2" - g(2) has infinitely many zeroes in every
neighbourhood of z, = 0. If g, would have a removable singularity the function must be
the zero function by the identity theorem. This can’t be true.

The expansions in R, and R are on annuli which are different from K, (z,). In fact there
is no singularity of f in z, = 0.

Since f has a pole there is a n € N such that (z — 25)"f (2) is bounded on K,(z,) in both
directions. This means there are ¢, C €]0, oo[ with

c<|f(@)-lz—2|"<=C

for all z in a small disc K,.(z;). From this follows the claim:

f(2)] =

Tz —Zo|n'

C

Fix w € C\ {0}. Choose a z € C with |z| > 0, Im(z) > 0 and e* = w. Since the exponential
map is 27-periodic we also have e*T2"™ = ¢ for each n € N. For each n € N we choose a

number x, € C with xi = - +21nm_ then lim,_,, x, = 0 so we can form the null sequence

Z, 1= —X,

and get

1

. _ 2 _ . _

T}Lrgof(zn) = exp ((—1) - ) =exp(z + 2nin) = w.
z+2n7i

For & = 0 choose an arbitrary real null sequence since there is a real continuous extension

-1
2

of e x? on the whole real axis.




