Analysis III - Complex Analysis Hints for solution for the 7. Exercise Sheet

Department of Mathematics

WS 11/12
Prof. Dr. Burkhard Kümmerer
January 24, 2012
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (The Fundamental Theorem of Algebra)
Use Liouville's Theorem to prove the Fundamental Theorem of Algebra: Every polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ which has no root is constant.
Hint: Consider the rational function $f(z)=\frac{1}{p(z)}$. Show this function has to be bounded if p has no roots.
Hints for solution: Assume $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$ is a polynomial without a root in \mathbb{C}. Then we have

$$
p(z)=z^{n} \cdot\left(a_{n}+\frac{a_{n-1}}{z}+\ldots+\frac{a_{0}}{z^{n}}\right) .
$$

We can find a $R>0$ and a $A>0$ such that $|p(z)|>A$ for $|z| \geq R$. By assumption $\frac{1}{p}$ is holomorphic. Since this function is bounded on $K_{R}(0)^{C}$ by the previous calculation and on $K_{R}(0)$ by compactness we see that $\frac{1}{p}$ is an entire bounded function, i. e. constant.

Exercise G2 (Complex powers of complex numbers)
Let $z, \omega \in \mathbb{C} \backslash\{0\}$ be complex numbers and let $l: \Omega \rightarrow \mathbb{C}$ be a logarithm with $z \in \Omega$. We define

$$
z^{\omega}:=\exp (l(z) \cdot \omega) .
$$

Of course this definition depends on the logarithm l. For simplicity we shall choose the principal value \log of the logarithm, i. e. the logarithm function on $\Omega:=\mathbb{C} \backslash]-\infty, 0[$ with $\log (1)=0$.
(a) Determine i^{i}.
(b) One might expect the identities

$$
\begin{aligned}
z^{\omega_{1}+\omega_{2}} & =z^{\omega_{1}} \cdot z^{\omega_{2}} \\
z_{1}^{\omega} \cdot z_{2}^{\omega} & =\left(z_{1} \cdot z_{2}\right)^{\omega} \\
\left(z^{\omega_{1}}\right)^{\omega_{2}} & =z^{\omega_{1} \cdot \omega_{2}}
\end{aligned}
$$

Discuss this.

Hints for solution:

(a) We calculate

$$
i^{i}=\exp (\log (i) \cdot i)=\exp \left(\frac{\pi}{2} \cdot i^{2}\right)=\exp \left(-\frac{\pi}{2}\right) \in \mathbb{R}
$$

(b) Only the formula $z^{\omega_{1}} \cdot z^{\omega_{2}}=z^{\omega_{1}+\omega_{2}}$ holds globally.

Exercise G3 (The complex sine function)
(a) Determine every zero of the complex sine, i. e. every $z \in \mathbb{C}$ with $\sin (z)=0$.
(b) Show: The function $f(z):=\frac{\sin (z)}{z}$ is holomorphic on $\Omega:=\mathbb{C} \backslash\{0\}$ and has a unique holomorphic extension to an entire function.
(c) Determine the integrals
(i) $\int_{C_{1}(0)} \frac{z}{\sin (z)} d z \quad$ and
(ii) $\int_{C_{1}(0)} \frac{1}{\sin (z)} d z$.

Hints for solution:

(a) Let $z \in \mathbb{C}$ be a complex number with $\sin (z)=0$. Then we get

$$
\begin{aligned}
& \sin (z)=0 \\
\Rightarrow & \frac{e^{i z}-e^{-i z}}{2 i}=0 \\
\Rightarrow & e^{i z}=e^{-i z} \\
\Rightarrow & e^{2 i z}=1 \\
\Rightarrow & 2 i z \in 2 \pi i \mathbb{Z} \\
\Rightarrow & z \in \pi \mathbb{Z} .
\end{aligned}
$$

Especially the zeros of sin are real numbers.
(b) Of course $\frac{\sin (z)}{z}$ is holomorphic for all $z \in \mathbb{C} \backslash\{0\}$. Further we can expand sin into a power series and see

$$
\frac{\sin (z)}{z}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n}
$$

This series converges on \mathbb{C} and this means the left hand side is holomorphic on \mathbb{C}.
(c) Since $\frac{\sin (z)}{z}$ has no zeroes in $\overline{\mathbb{D}}$ we get

$$
\oint_{C_{1}(0)} \frac{z}{\sin (z)} d z=0
$$

With the Cauchy integral formula and $g(z):=\frac{\sin (z)}{z}$ we see

$$
\begin{aligned}
\oint_{C_{1}(0)} \frac{1}{\sin (z)} d z & =\oint_{C_{1}(0)} \frac{\frac{z}{\sin (z)}}{z} d z=\oint_{C_{1}(0)} \frac{\frac{1}{g(z)}}{z} d z \\
& =2 \pi i \frac{1}{g(0)}=2 \pi i
\end{aligned}
$$

since $\frac{1}{g}$ is holomorphic on a disc with center 0 and radius smaller than π.

Exercise G4 (Cauchy Integral Formula)
Determine the integrals

$$
\text { (i) } \int_{C_{2}(i)} \frac{1}{z^{2}+4} d z, \quad \text { (ii) } \int_{C_{2}(i)} \frac{1}{\left(z^{2}+4\right)^{2}} d z
$$

Hints for solution:

$$
\text { (i) } \int_{C_{2}(i)} \frac{1}{z^{2}+4} d z=\frac{\pi}{2} \text {. }
$$

For (ii) we use the Cauchy Integral Formula for the derivatives of a holorphic function:

$$
\begin{aligned}
\int_{C_{2}(i)} \frac{1}{\left(z^{2}+4\right)^{2}} d z & =\int_{C_{2}(i)} \frac{\frac{1}{(z+2 i)^{2}}}{(z-2 i)^{2}} d z \\
& =\int_{C_{2}(i)} \frac{f(z)}{(z-2 i)^{2}} d z
\end{aligned}
$$

for $f(z)=\frac{1}{(z+2 i)^{2}}$. We get

$$
\int_{C_{2}(i)} \frac{1}{\left(z^{2}+4\right)^{2}} d z=2 \pi i \cdot f^{\prime}(2 i)=\frac{\pi}{16}
$$

Homework

Exercise H1 (A generalisation of Liouville's theorem)
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic. Further assume there are constants $a, b \in] 0, \infty[$ and a natural number $n \in \mathbb{N}$ with $|f(z)| \leq a \cdot|z|^{n}+b$ for all $z \in \mathbb{C}$. Show that f is a polynomial with $\operatorname{deg}(f) \leq n$.
Hints for solution: Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ the power series expansion of f. We get from the Cauchy estimation for a choosen $r>0$:

$$
\left|a_{m}\right| \leq r^{-m} \cdot \max _{|z|=r}|f(z)| \leq a \cdot r^{n-m}+b \cdot r^{-m} .
$$

In the limit $r \rightarrow \infty$ we get for every $m>n$ the identity $a_{m}=0$ thus f is a polynomial of degree not higher than n.

Exercise H2 (Power Series)
(a) Let $f: \Omega \rightarrow \mathbb{C}$ a holomorphic function and $K_{r}\left(z_{0}\right) \subseteq \Omega$ for some $r>0$. If f is unbounded on $K_{r}\left(z_{0}\right)$ then the power series expansion of f in z_{0} has radius of convergence r.
(b) Determine the radius of convergence for the power series expansion in $z_{0}=0$ of the following functions

$$
\text { (i) } f(z)=\frac{1}{z+i}, \quad \text { (ii) } \quad g(z)=\frac{1}{z^{2}+z+1}, \quad \text { (iii) } \quad g(z)=\frac{1}{\cos (z)} \text {. }
$$

Hints for solution:

(a) Since $K_{r}\left(z_{0}\right) \subseteq \Omega$ we know there is a power series expansion $f(z)=\sum_{n \in \mathbb{N}} a_{n}\left(z-z_{0}\right)^{n}$. Since f is unbounded on $K_{r}\left(z_{0}\right)$ there is a sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ with $\left|f\left(z_{n}\right)\right|>n$. Assume the radius of convergence is bigger then r. Then the series converges on $\overline{K_{r}\left(z_{0}\right)}$. Since this set is compact and since the function $|f|$ is continuous on $K_{r}\left(z_{0}\right)$ we conclude $|f|$ is bounded a contradiction.
(b) (i) $r=1$, (ii) $r=1, \quad$ (iii) $r=\frac{\pi}{2}$.

Exercise H3 (The biholomorphic maps of the open unit disk)
In this excercise we discuss the biholomorphic transformations of the open unit disk \mathbb{D}, i. e. the set
$\operatorname{Aut}(\mathbb{D}):=\{f: \mathbb{D} \rightarrow \mathbb{D}, f$ is holomorphic, bijective and its inverse is again holomorphic $\}$.
Obviously this set forms a subgroup of the group of all bijections of \mathbb{D}. We call an element $f \in \operatorname{Aut}(\mathbb{D})$ an automorphism of \mathbb{D}.
To understand this group, we first prove Schwarz's Lemma. This will help us to determine the automorphisms which leaves the point $0 \in \mathbb{D}$ fix. Then we classify the automorphisms of \mathbb{D}.
(a) Prove Schwarz's Lemma: If $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic with $f(0)=0$ then we have for all $z \in \mathbb{D}$ the estimation $|f(z)| \leq|z|$.
Further if there exists a $z_{0} \in \mathbb{D}$ with $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ or if $\left|f^{\prime}(0)\right|=1$ then $f(z)=\lambda \cdot z$ for some $\lambda \in \mathbb{T}$, i. e. f is a rotation.
Hint: Consider the function $g(z):=\frac{f(z)}{z}$ and use the maximum principle.
(b) Show that every automorphism $f \in \operatorname{Aut}(\mathbb{D})$ with $f(0)=0$ is a rotation.
(c) Show that every element of the set

$$
J:=\left\{f(z)=\frac{a z+b}{\bar{b} z+\bar{a}}\left|a, b \in \mathbb{C}:|a|^{2}-|b|^{2}=1\right\}\right.
$$

is an automorphism of \mathbb{D} and show that J is a subgroup of $\operatorname{Aut}(\mathbb{D})$. Further show

$$
J=\left\{\left.f(z)=e^{i \varphi} \cdot \frac{z-\omega}{\bar{\omega} \cdot z-1} \right\rvert\, \omega \in \mathbb{D}, 0 \leq \varphi<2 \pi\right\}
$$

(d) Fix $\omega \in \mathbb{D}$. Find an automorphism $f \in J$ with $f(0)=\omega$.
(e) Prove: If $H \subseteq \operatorname{Aut}(\mathbb{D})$ is a subgroup which satisfies
(i) for every $z, w \in \mathbb{D}$ there is an automorphism $f \in H$ with $f(z)=w$ (H acts transitively on \mathbb{D}),
(ii) there is a point $z \in \mathbb{D}$ such that $f \in \operatorname{Aut}(\mathbb{D})$ with $f(z)=z$ implies $f \in H$ (H contains the stabiliser of some $z \in \mathbb{D}$),
then $H=\operatorname{Aut}(\mathbb{D})$.
Conclude

$$
\begin{aligned}
\operatorname{Aut}(\mathbb{D}) & =\left\{f(z)=\frac{a z+b}{\bar{b} z+\bar{a}}\left|a, b \in \mathbb{C}:|a|^{2}-|b|^{2}=1\right\}\right. \\
& =\left\{\left.f(z)=e^{i \varphi} \cdot \frac{z-\omega}{\bar{\omega} \cdot z-1} \right\rvert\, \omega \in \mathbb{D}, 0 \leq \varphi<2 \pi\right\}
\end{aligned}
$$

(f) Show: Every $f \in \operatorname{Aut}(\mathbb{D})$ extends to $\overline{\mathbb{D}}$ and maps \mathbb{T} bijective to \mathbb{T}.

Hints for solution:

(a) We have $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=1}^{\infty} a_{n} z^{n}=z \cdot \sum_{n=0}^{\infty} a_{n+1} z^{n}=z \cdot g(z)$ and $g(0)=a_{1}=f^{\prime}(0)$. From $|f(z)| \leq 1$ we conclude $r \cdot \max _{|z|=r}|g(z)| \leq 1$ for all $0<r<1$, i. e. $f(z) \leq|z|$. Further $\left|f^{\prime}(0)\right|=|g(0)| \leq 1$.
Assume $\left|f^{\prime}(0)\right|=1$ or $|g(c)|=|c|$ for some $c \in \mathbb{D} \backslash\{0\}$. Then we have $|g(0)|=1$ or $|g(c)|=1$ which means that g takes a maximum on \mathbb{D}. From the maximum principle we follow that g is constant. Thus $f(z)=z \cdot g(z)=z \cdot \lambda$.
(b) Since f is an automorphism the inverse $\operatorname{map} f^{-1}$ is again an automorphism and we follow

$$
\left.|f(z)| \leq|z| \quad \text { and } \quad|z|=\mid f^{-1}(f(z))\right)|\leq|f(z)|
$$

for all $z \in \mathbb{D}$. This means $|f(z)|=|z|$ and by (a) $f(z)=\lambda \cdot z$.
(c) Simple calculation.
(d) Take for example

$$
f(z):=\frac{z-\omega}{\bar{\omega} \cdot z-1} .
$$

Then we have $f(0)=\omega$.
(e) Let $h \in \operatorname{Aut}(\mathbb{D})$ arbitrary. Since H acts transitively we find an $g \in H$ with $g(h(z))=z$. Thus $g \circ h$ is an element of the stabiliser of $z \in \mathbb{D}$ and we conclude $g \circ h \in H$. Since H is a subgroup we have

$$
h=g^{-1} \circ g \circ h \in H
$$

Thus $H=\operatorname{Aut}(\mathbb{D})$.
(f) Choose an $f \in \operatorname{Aut}(\mathbb{D})$ with $\varphi=0$. Since $|\omega|<1$ there is no singularity of f in the set $\overline{\mathbb{D}}$. Thus $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ is well defined.
For $|z|=1$ we see

$$
\begin{aligned}
|f(z)|^{2} & =\left|\frac{z-\omega}{\bar{\omega} \cdot z-1}\right|^{2}=\frac{|z|^{2}-w \bar{z}-\bar{\omega} z+|\omega|^{2}}{|\omega|^{2}|z|^{2}-\omega \bar{z}-\bar{\omega} z+1} \\
& =\frac{1-w \bar{z}-\bar{\omega} z+|\omega|^{2}}{|\omega|^{2}-\omega \bar{z}-\bar{\omega} z+1}=1
\end{aligned}
$$

Thus $f(\mathbb{T}) \subseteq \mathbb{T}$.
Choose $\lambda \in \mathbb{T}$ arbitrary and put $z=\frac{\omega-\lambda}{1-\lambda \bar{\omega}}$. Then we have $|z|=1$ and $f(z)=\lambda$. This means $f(\mathbb{T})=\mathbb{T}$. A simple calculation shows that f is injective.
For $\varphi \neq 0$ we know $g(z):=e^{i \varphi} z$ is a bijection of \mathbb{D} and of \mathbb{T}. Thus the argumentation above holds for arbitrary automorphisms $f \in \operatorname{Aut}(\mathbb{D})$.

