Analysis III – Complex Analysis Hints for solution for the 7. Exercise Sheet

technische UNIVERSITÄT

WS 11/12

January 24, 2012

Department of Mathematics Prof. Dr. Burkhard Kümmerer Andreas Gärtner Walter Reußwig

Groupwork

Exercise G1 (The Fundamental Theorem of Algebra)

Use Liouville's Theorem to prove the Fundamental Theorem of Algebra: Every polynomial $p : \mathbb{C} \to \mathbb{C}$ which has no root is constant.

Hint: Consider the rational function $f(z) = \frac{1}{p(z)}$. Show this function has to be bounded if *p* has no roots.

Hints for solution: Assume $p(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial without a root in \mathbb{C} . Then we have

$$p(z) = z^n \cdot \left(a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right).$$

We can find a R > 0 and a A > 0 such that |p(z)| > A for $|z| \ge R$. By assumption $\frac{1}{p}$ is holomorphic. Since this function is bounded on $K_R(0)^C$ by the previous calculation and on $K_R(0)$ by compactness we see that $\frac{1}{p}$ is an entire bounded function, i. e. constant.

Exercise G2 (Complex powers of complex numbers) Let $z, \omega \in \mathbb{C} \setminus \{0\}$ be complex numbers and let $l : \Omega \to \mathbb{C}$ be a logarithm with $z \in \Omega$. We define

 $z^{\omega} := \exp(l(z) \cdot \omega).$

Of course this definition depends on the logarithm *l*. For simplicity we shall choose the principal value Log of the logarithm, i. e. the logarithm function on $\Omega := \mathbb{C} \setminus] - \infty$, 0[with Log(1) = 0.

- (a) Determine i^i .
- (b) One might expect the identities

$$z^{\omega_1+\omega_2} = z^{\omega_1} \cdot z^{\omega_2},$$

$$z_1^{\omega} \cdot z_2^{\omega} = (z_1 \cdot z_2)^{\omega},$$

$$(z^{\omega_1})^{\omega_2} = z^{\omega_1 \cdot \omega_2}.$$

Discuss this.

Hints for solution:

(a) We calculate

$$i^{i} = \exp(\operatorname{Log}(i) \cdot i) = \exp\left(\frac{\pi}{2} \cdot i^{2}\right) = \exp\left(-\frac{\pi}{2}\right) \in \mathbb{R}.$$

(b) Only the formula $z^{\omega_1} \cdot z^{\omega_2} = z^{\omega_1 + \omega_2}$ holds globally.

Exercise G3 (The complex sine function)

- (a) Determine every zero of the complex sine, i. e. every $z \in \mathbb{C}$ with sin(z) = 0.
- (b) Show: The function $f(z) := \frac{\sin(z)}{z}$ is holomorphic on $\Omega := \mathbb{C} \setminus \{0\}$ and has a unique holomorphic extension to an entire function.
- (c) Determine the integrals

(i)
$$\int_{C_1(0)} \frac{z}{\sin(z)} dz$$
 and (ii) $\int_{C_1(0)} \frac{1}{\sin(z)} dz$.

Hints for solution:

(a) Let $z \in \mathbb{C}$ be a complex number with sin(z) = 0. Then we get

$$\sin(z) = 0$$

$$\Rightarrow \frac{e^{iz} - e^{-iz}}{2i} = 0$$

$$\Rightarrow e^{iz} = e^{-iz}$$

$$\Rightarrow e^{2iz} = 1$$

$$\Rightarrow 2iz \in 2\pi i\mathbb{Z}$$

$$\Rightarrow z \in \pi\mathbb{Z}.$$

Especially the zeros of sin are real numbers.

(b) Of course $\frac{\sin(z)}{z}$ is holomorphic for all $z \in \mathbb{C} \setminus \{0\}$. Further we can expand sin into a power series and see

$$\frac{\sin(z)}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n}.$$

This series converges on $\mathbb C$ and this means the left hand side is holomorphic on $\mathbb C.$

(c) Since $\frac{\sin(z)}{z}$ has no zeroes in $\overline{\mathbb{D}}$ we get

$$\oint_{C_1(0)} \frac{z}{\sin(z)} dz = 0.$$

With the Cauchy integral formula and $g(z) := \frac{\sin(z)}{z}$ we see

$$\oint_{C_1(0)} \frac{1}{\sin(z)} dz = \oint_{C_1(0)} \frac{\frac{z}{\sin(z)}}{z} dz = \oint_{C_1(0)} \frac{\frac{1}{g(z)}}{z} dz \\
= 2\pi i \frac{1}{g(0)} = 2\pi i$$

since $\frac{1}{q}$ is holomorphic on a disc with center 0 and radius smaller than π .

Exercise G4 (Cauchy Integral Formula)

Determine the integrals

(i)
$$\int_{C_2(i)} \frac{1}{z^2 + 4} dz$$
, (ii) $\int_{C_2(i)} \frac{1}{(z^2 + 4)^2} dz$.

Hints for solution:

(i)
$$\int_{C_2(i)} \frac{1}{z^2 + 4} dz = \frac{\pi}{2}.$$

For (ii) we use the Cauchy Integral Formula for the derivatives of a holorphic function:

$$\begin{split} \int_{C_2(i)} \frac{1}{(z^2+4)^2} dz &= \int_{C_2(i)} \frac{\frac{1}{(z+2i)^2}}{(z-2i)^2} dz \\ &= \int_{C_2(i)} \frac{f(z)}{(z-2i)^2} dz \end{split}$$

for $f(z) = \frac{1}{(z+2i)^2}$. We get

$$\int_{C_2(i)} \frac{1}{(z^2+4)^2} dz = 2\pi i \cdot f'(2i) = \frac{\pi}{16}.$$

Homework

Exercise H1 (A generalisation of Liouville's theorem)

Let $f : \mathbb{C} \to \mathbb{C}$ holomorphic. Further assume there are constants $a, b \in]0, \infty[$ and a natural number $n \in \mathbb{N}$ with $|f(z)| \leq a \cdot |z|^n + b$ for all $z \in \mathbb{C}$. Show that f is a polynomial with $\deg(f) \leq n$.

Hints for solution: Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ the power series expansion of f. We get from the Cauchy estimation for a choosen r > 0:

$$|a_m| \le r^{-m} \cdot \max_{|z|=r} |f(z)| \le a \cdot r^{n-m} + b \cdot r^{-m}.$$

In the limit $r \to \infty$ we get for every m > n the identity $a_m = 0$ thus f is a polynomial of degree not higher than n.

(1 point)

Exercise H2 (Power Series)

(1 point)

- (a) Let $f : \Omega \to \mathbb{C}$ a holomorphic function and $K_r(z_0) \subseteq \Omega$ for some r > 0. If f is unbounded on $K_r(z_0)$ then the power series expansion of f in z_0 has radius of convergence r.
- (b) Determine the radius of convergence for the power series expansion in $z_0 = 0$ of the following functions

(i)
$$f(z) = \frac{1}{z+i}$$
, (ii) $g(z) = \frac{1}{z^2 + z + 1}$, (iii) $g(z) = \frac{1}{\cos(z)}$

Hints for solution:

- (a) Since $K_r(z_0) \subseteq \Omega$ we know there is a power series expansion $f(z) = \sum_{n \in \mathbb{N}} a_n (z z_0)^n$. Since f is unbounded on $K_r(z_0)$ there is a sequence $(z_n)_{n \in \mathbb{N}}$ with $|f(z_n)| > n$. Assume the radius of convergence is bigger then r. Then the series converges on $\overline{K_r(z_0)}$. Since this set is compact and since the function |f| is continuous on $K_r(z_0)$ we conclude |f| is bounded a contradiction.
- (b) (i) r = 1, (ii) r = 1, (iii) $r = \frac{\pi}{2}$.

Exercise H3 (The biholomorphic maps of the open unit disk)

In this excercise we discuss the biholomorphic transformations of the open unit disk \mathbb{D} , i. e. the set

Aut(\mathbb{D}) := { $f : \mathbb{D} \to \mathbb{D}$, f is holomorphic, bijective and its inverse is again holomorphic}.

Obviously this set forms a subgroup of the group of all bijections of \mathbb{D} . We call an element $f \in Aut(\mathbb{D})$ an *automorphism of* \mathbb{D} .

To understand this group, we first prove Schwarz's Lemma. This will help us to determine the automorphisms which leaves the point $0 \in \mathbb{D}$ fix. Then we classify the automorphisms of \mathbb{D} .

(a) Prove Schwarz's Lemma: If f : D → D is holomorphic with f(0) = 0 then we have for all z ∈ D the estimation |f(z)| ≤ |z|.
Further if there exists a z₀ ∈ D with |f(z₀)| = |z₀| or if |f'(0)| = 1 then f(z) = λ ⋅ z for some λ ∈ T, i. e. f is a rotation.

Hint: Consider the function $g(z) := \frac{f(z)}{z}$ and use the maximum principle.

- (b) Show that every automorphism $f \in Aut(\mathbb{D})$ with f(0) = 0 is a rotation.
- (c) Show that every element of the set

$$J := \left\{ f(z) = \frac{az+b}{\overline{b}z+\overline{a}} \middle| a, b \in \mathbb{C} : |a|^2 - |b|^2 = 1 \right\}$$

is an automorphism of \mathbb{D} and show that *J* is a subgroup of Aut(\mathbb{D}). Further show

$$J = \left\{ f(z) = e^{i\varphi} \cdot \frac{z - \omega}{\overline{\omega} \cdot z - 1} \right| \, \omega \in \mathbb{D}, \, 0 \le \varphi < 2\pi \right\}.$$

- (d) Fix $\omega \in \mathbb{D}$. Find an automorphism $f \in J$ with $f(0) = \omega$.
- (e) Prove: If $H \subseteq Aut(\mathbb{D})$ is a subgroup which satisfies
 - (i) for every $z, w \in \mathbb{D}$ there is an automorphism $f \in H$ with f(z) = w (*H* acts transitively on \mathbb{D}),
 - (ii) there is a point $z \in \mathbb{D}$ such that $f \in Aut(\mathbb{D})$ with f(z) = z implies $f \in H$ (*H* contains the stabiliser of some $z \in \mathbb{D}$),

then $H = \operatorname{Aut}(\mathbb{D})$.

Conclude

Aut(
$$\mathbb{D}$$
) = $\left\{ f(z) = \frac{az+b}{\overline{b}z+\overline{a}} \middle| a, b \in \mathbb{C} : |a|^2 - |b|^2 = 1 \right\}$
 = $\left\{ f(z) = e^{i\varphi} \cdot \frac{z-\omega}{\overline{\omega} \cdot z - 1} \middle| \omega \in \mathbb{D}, \ 0 \le \varphi < 2\pi \right\}.$

(f) Show: Every $f \in Aut(\mathbb{D})$ extends to $\overline{\mathbb{D}}$ and maps \mathbb{T} bijective to \mathbb{T} .

Hints for solution:

- (a) We have $f(z) = \sum_{n=0}^{\infty} a_n z^n = \sum_{n=1}^{\infty} a_n z^n = z \cdot \sum_{n=0}^{\infty} a_{n+1} z^n = z \cdot g(z)$ and $g(0) = a_1 = f'(0)$. From $|f(z)| \le 1$ we conclude $r \cdot \max_{|z|=r} |g(z)| \le 1$ for all 0 < r < 1, i. e. $f(z) \le |z|$. Further $|f'(0)| = |g(0)| \le 1$. Assume |f'(0)| = 1 or |g(c)| = |c| for some $c \in \mathbb{D} \setminus \{0\}$. Then we have |g(0)| = 1 or |g(c)| = 1 which means that g takes a maximum on \mathbb{D} . From the maximum principle we follow that g is constant. Thus $f(z) = z \cdot g(z) = z \cdot \lambda$.
- (b) Since f is an automorphism the inverse map f^{-1} is again an automorphism and we follow

$$|f(z)| \le |z|$$
 and $|z| = |f^{-1}(f(z))| \le |f(z)|$

for all $z \in \mathbb{D}$. This means |f(z)| = |z| and by (a) $f(z) = \lambda \cdot z$.

- (c) Simple calculation.
- (d) Take for example

$$f(z) := \frac{z - \omega}{\overline{\omega} \cdot z - 1}.$$

Then we have $f(0) = \omega$.

(e) Let $h \in Aut(\mathbb{D})$ arbitrary. Since H acts transitively we find an $g \in H$ with g(h(z)) = z. Thus $g \circ h$ is an element of the stabiliser of $z \in \mathbb{D}$ and we conclude $g \circ h \in H$. Since H is a subgroup we have

$$h = g^{-1} \circ g \circ h \in H.$$

Thus $H = \operatorname{Aut}(\mathbb{D})$.

(f) Choose an *f* ∈ Aut(D) with φ = 0. Since |ω| < 1 there is no singularity of *f* in the set D. Thus *f* : D→ C is well defined. For |z| = 1 we see

$$|z| - 1$$
 we see

$$|f(z)|^2 = |\frac{z-\omega}{\overline{\omega}\cdot z-1}|^2 = \frac{|z|^2 - w\overline{z} - \overline{\omega}z + |\omega|^2}{|\omega|^2|z|^2 - \omega\overline{z} - \overline{\omega}z + 1}$$
$$= \frac{1 - w\overline{z} - \overline{\omega}z + |\omega|^2}{|\omega|^2 - \omega\overline{z} - \overline{\omega}z + 1} = 1.$$

Thus $f(\mathbb{T}) \subseteq \mathbb{T}$.

Choose $\lambda \in \mathbb{T}$ arbitrary and put $z = \frac{\omega - \lambda}{1 - \lambda \overline{\omega}}$. Then we have |z| = 1 and $f(z) = \lambda$. This means $f(\mathbb{T}) = \mathbb{T}$. A simple calculation shows that f is injective.

For $\varphi \neq 0$ we know $g(z) := e^{i\varphi}z$ is a bijection of \mathbb{D} and of \mathbb{T} . Thus the argumentation above holds for arbitrary automorphisms $f \in Aut(\mathbb{D})$.