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Groupwork

Exercise G1 (Cauchy Integral Formula)

Use the Cauchy Integral Formula to determine the following integrals:

(a)

∮

C1(i)

1

z− i
dz, (b)

∮

C1(i)

1

z2+ 1
dz, (c)

∮

C42(i)

1

z2+ 1
dz.

Hint: To decompose the integral in (c) into elementary circle integrals use the homotopy invari-
ance of the path integral.

Hints for solution: The Cauchy integral formula is usefull to calculate path integrals around
singularities of holomorphic functions: (i)

∮

C1(i)

1

z− i
dz =

∮

C1(i)

f (z)
z− i

dz = 2πi f (i).

with f (z) := 1 for all z ∈ C, because this function f is holomorphic on K1(i). Thus
∮

C1(i)

1

z− i
dz = 2πi.

(ii) We see with f (z) = 1
z+i

:

∮

C1(i)

1

z2+ 1
dz =

∮

C1(i)

1
z+i

z− i
dz =

∮

C1(i)

f (z)
z− i

dz

= 2πi · f (i) =
2πi

2i
= π.

(iii) Since C42(0) is homotopic in C\{−i, i} in some sense to a path behaving like C1(i)+C1(−i)
we have to calculate

∮

C1(−i)

1
z−i

z+ i
dz = 2πi f (−i) =

2πi

−2i
=−π.

Thus the integral in (iii) vanishes, since π+ (−π) = 0.
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Exercise G2 (Radius of convergence)

Consider a power series f (z) =
∑∞

n=0 anzn which has radius of convergence r > 0. Show: There
is no holomorphic extension of f on KR(0) for any R> r.

Hints for solution: Assume there is a holomorphic extension g of f on a greater disc. Since g
is holomorphic we could represent g by a power series with center 0 and radius of convergence
R. Since the f and g coincidences on Kr(0) we conclude both power series coincidences. But
this means R must be the radius of convergence of f , a contradiction.
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Exercise G3 (The Cauchy transform)
Let f : T→ C be a continuous function. We define a function bf : D→ C by

bf (z) :=
1

2πi

∮

T

f (ω)
ω− z

dω.

(a) Show that bf is holomorphic.

(b) Show: If f : Ω→ C with D⊆ Ω is holomorphic then bf = f .

(c) Is it always true that limz→ω, z∈D
bf (z) = f (ω) holds for ω ∈ T?

The function bf is called the Cauchy transform of f .

Hints for solution:

(a) We follow the proof of the main theorem of holomorphy from the lectures and show that
g can be represented on D by a power series. Indeed for z ∈ D and ω ∈ T we have
|z|< |ω|= 1 and

1

ω− z
=

1

ω
·

1

1− z
ω

=
1

ω
·
∞
∑

n=0

� z

ω

�n

=
∞
∑

n=0

�

1

ω

�n+1

· zn.

Further let M :=


 f




∞,T. Since f is bounded on the circle we get

�

�

�

�

f (ω)
ωn+1 zn

�

�

�

�

≤ M · zn.

This shows that
f (ω)
ω− z

=
∞
∑

n=0

f (ω)
ωn+1 zn

converges locally uniformly on D. Integrating both sides brings

g(z) =
1

2πi

∮

T

f (ω)
ω− z

dω

=
1

2πi
·
∮

T

∞
∑

n=0

f (ω)
ωn+1 zndω

=
∞
∑

n=0

�

1

2πi
·
∮

T

f (ω)
ωn+1 dω

�

zn.

We see that g is holomorphic and we have a formula to determine the coefficients of its
power series.
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(b) This is exactly the Cauchy integral formula.

(c) We give a counterexample. Let f : T→ T, f (z) := z = z−1. Then we get

g(z) =
1

2πi

∮

T

f (ω)
ω− z

dω

=
1

2πi

∮

T

1

ω(ω− z)
dω

=
1

2πi

∮

Cr (0)

1

ω(ω− z)
dω+

1

2πi

∮

CR(z)

1

ω(ω− z)
dω

= 2πi ·
�

−
1

z
+

1

z

�

= 0

where r and R are small enough. Thus g(z) = 0 for all z ∈ D and so we see

f (1) = 1 6= 0= lim
z→0, z∈D

g(z).

This contradicts the conjecture.
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Homework

Exercise H1 (Conjugation with reflections) (1 point)

Let L ⊆ C a one dimensional real subspace of C. Further let σ : C→ C the real linear map with
σ(l) = l for all l ∈ L and σ(l⊥) = −l⊥ for all l ∈ L⊥ where L⊥ is the orthogonal complement of
L with resprect to the canonical scalar product on R2. Of course this means that σ is orthogonal
with determinant −1.

(a) Let Ω ⊆ C be a domain and f : Ω→ C a function. Show that the following statements are
equivalent:
(i) f : Ω→ C is holomorphic.

(ii) σ ◦ f ◦σ : σ(Ω)→ C is holomorphic.

Now let Ω ⊆ C be a domain which is symmetric a to the real axis, i. e. Ω = {z : z ∈ Ω}. We
define f ∗(z) := f (z). From (a) it follows that f ∗ is holomorphic if and only if f is holomorphic.

(b) Determine the derivative of f ∗ directly.

(c) Assume f (z) =
∑∞

k=0 ak · zk converges on Ω. Determine the power series of f ∗. Which
holomorphic functions of this form satisfy f = f ∗?

(d) Show that every holomorphic function on Ω is linear combination of two holomorphic
functions g, h on Ω with g = g∗ and h= h∗.
Hint: To get an idea you could first prove (d) for holomorphic functions given by a power
series like in (c).

Hints for solution:

(a) We show (i)⇒ (ii): Since σ is a real linear map the function σ◦ f ◦σ is real differentiable.
The differential is given by

d(σ ◦ f ◦σ)(x , y) = dσ( f (σ(x , y))) · d f (σ(x , y)) · dσ(y)
= σ · d f (σ(x , y)) ·σ.

We show that the Cauchy-Riemann differential equations are satisfied. Since f is holomor-
phic by assumption we have for an arbitrary but fixed (x , y) ∈ R2:

d f (σ(x , y)) = λ ·
�

a b
−b a

�

= λ · T

where the matrix T is an orthogonal matrix with determinant 1. Thus

d f (x , y) = λ · (σ · T ·σ) = λ · S

and S is a matrix with determinant 1 and a product of three orthogonal matrices. Thus S is
again an orthogonal matrix. This means d f (x , y) satisfies the Cauchy-Riemann differential
equations.
(ii)⇒ (i): We know that if f is holomorphic so σ ◦ f ◦σ is holomorphic, too. Set g(z) :=
σ ◦ f ◦σ(z). By assumption g is holomorphic. We know by the first step that σ ◦ g ◦σ is
holomorphic, too. Thus

σ ◦ g ◦σ = σ2 ◦ f ◦σ2 = f .

This means f is holomorphic.
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(b) We get

( f ∗)′(z) = lim
z→z0

f ∗(z)− f ∗(z0)
z− z0

= lim
z→z0

f (z)− f (z0)
z− z0

= lim
z→z0

�

f (z)− f (z0)
z− z0

�

=
�

lim
z→z0

f (z)− f (z0)
z− z0

�

= f ′(z0).

(c) Of course f ∗(z) =
∑∞

k=0 ak · zk. Thus we have f = f ∗ if and only if all coefficients of the
power series are real numbers.

(d) Set g = 1
2
( f + f ∗) and h := i

2
· ( f − f ∗). Then we have f = g − ih.
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Exercise H2 (The mean value property) (1 point)

Let Ω⊆ C a simply connected domain.

(a) Show that the following statements are equivalent for a function u : Ω→ R:
(i) ∆u(z) = 0 for each z ∈ Ω where ∆ is the Laplacian if we identify Ω as a subset of R2.

(ii) There is a holomorphic function f : Ω→ C with u(z) = Re( f (z)).
We call a function u satisfiing (i) harmonic on Ω.

(b) Show the mean value property for harmonic functions: If u : Ω → R is harmonic and
Kr(z0)⊆ Ω holds, then

u(z0) =
1

2π

∫ 2π

0

u(z0+ r · ei t)d t.

Now let Ω⊆ C be an arbitrary domain.

(c) Let u : Ω→ R be a harmonic function. Since Ω need not to be simply connected, we can’t
conclude that u is the real part of a holomorphic function. Why does u satisfy the mean
value property anyway?

Hints for solution:

(a-) Using the Cauchy Integral Formula we get

f (z) =
1

2πi

∮

Cr (z0)

f (ω)
ω− z

dω

=
1

2πi

∫ 2π

0

f (z0+ r · ei t)
z0− z+ r · ei t · ir · e

i t d t.

=
1

2π

∫ 2π

0

f (z0+ r · ei t)
z0− z+ r · ei t · r · e

i t d t.

This equation holds for z = z0 and we see

f (z0) =
1

2π

∫ 2π

0

f (z0+ rei t)d t.

(a) If ∆u= 0 we have ∂ 2
x u=−∂ 2

y u. Thus the vector field (−∂yu,∂xu) satisfies the integrability
conditions. This means there is a potential v : Ω→ R for u with

∂x v =−∂yu, ∂yv = ∂xu.

Further v is harmonic and f (x + i y) := u(x , y) + iv (x , y) satisfies the Cauchy-Riemann
differential equations by construction. This means u is the real part of a holomorphic
function. In opposite a real part of a holomorphic function is harmonic since the Cauchy-
Riemann differential equations are satisfied.

(b) Integrate only the real part in (a-) and you get the mean value property for harmonic
functions:

Re( f (z0)) = Re

 

1

2π

∫ 2π

0

f (z0+ r · ei t)d t

!

=
1

2π

∫ 2π

0

Re( f (z0+ r · ei t))d t.
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(c) Yes since Kr(z0) ⊆ Ω means that there is a simply connected open subset U ⊆ Ω with
Kr(z0)⊆ U and u is harmonic on U . This implies u is locally the real part of a holomorphic
function and we can apply the Cauchy integral formula and everything we had done stays
locally true. Especially the mean value property.
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Exercise H3 (Real integrals and complex path integrals) (1 point)

In this exercise we want to calculate the integral:

∫ ∞

−∞

x2

x4+ 1
d x .

We will see that the complex line integral could be a mighty help for real integration.

(a) Calculate the roots of the polynomial p(z) = z4 + 1. Sketch them into the unit circle and
decide which of them lie in the upper half plane H := {z ∈ C : Im(z)> 0}.

(b) Show that the real integral
∫ ∞

−∞

x2

x4+ 1
d x

exists and is finite.

(c) Let r ∈]1,∞[ an arbitrary number. Consider the paths

γ(1)r : [0,1]→ C, γ(1)r (t) := r(2t − 1),

γ(2)r : [0,1]→ C, γ(2)r (t) := r · eiπt .

and set γr := γ(1)r + γ
(2)
r . Assure yourself that γr is a loop in C. Sketch the path γr for a

suitable choice of r > 1 and argue that

∫

γr

z2

z4+ 1
dz

is independent of the choosen r ∈]1,∞[.
(d) Use the standard estimation to show

lim
r→∞

∫

γ
(2)
r

z2

z4+ 1
dz = 0. Conclude:

∫ ∞

−∞

x2

x4+ 1
d x =

∫

γr

z2

z4+ 1
dz

for any r > 1.

(e) Use the Cauchy Integral Formular and the factorisation of z4+1 into linear factors to show

1

2πi
·
∮

C1(ξ1)

z2

z4+ 1
dz =

ξ2
1

(ξ1− ξ2)(ξ1− ξ3)(ξ1− ξ4)

1

2πi
·
∮

C1(ξ2)

z2

z4+ 1
dz =

ξ2
2

(ξ2− ξ1)(ξ2− ξ3)(ξ2− ξ4)

where ξk = e
πi(2k+1)

4 are the roots of z4+ 1.
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(f) Argue
∫

γr

z2

z4+ 1
dz =

∮

C1(ξ1)

z2

z4+ 1
dz+

∮

C1(ξ2)

z2

z4+ 1
dz

for any r > 1. Finally determine this integral.

Hints for solution:

(a) Assume ξ ∈ C is a root of X 4+ 1. Then we have ξ4 =−1 and this means

ξ ∈
n

e
i·π
4 ·(2k+1) : 0≤ k ≤ 3

o

=: N .

(b) We estimate the real integral:
�

�

�

�

�

∫ ∞

−∞

x2

1+ x4

�

�

�

�

�

d x =

∫ ∞

−∞

x2

1+ x4 d x

=

∫ 1

−1

x2

1+ x4 d x + 2 ·
∫ ∞

1

x2

1+ x4 d x

≤
∫ 1

−1

1 · d x + 2 ·
∫ ∞

1

x2

1+ x4 d x

≤ 2+ 2 ·
∫ ∞

1

1

x2 d x

= 2+
2

3
<∞.

This means the real integral exists.

(c) Since γr is homotopic to γs for 1 < r, s we get the claim by the cauchy integral theo-
rem or the real path integral. Recognize, the function f is defined on C \ N . So all
holes/singularities occur in a circle of radius 1.

(d) We use |γ(z)|= r and L(γ(2)r ) = r ·π and get

∫

γ
(2)
r

f (z)dz ≤ max
{|z|=r, Im(z)>0,r>1}

| f (z)| · L(γ(2)r )

= max
{|z|=r, Im(z)>0,r>1}

|
|z|2

1+ |z|4
·π · r

≤
r ·π
r2 =

π

r
.

So we get the result by taking the limit r → ∞. The conclusion is clear since the path
integral is additive.

(e) We have the factorisation

f (z) =
z2

(z− ξ1)(z− ξ2)(z− ξ3)(z− ξ4)
.
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Define the functions

g(z) =
z2

(z− ξ2)(z− ξ3)(z− ξ4)
,

h(z) =
z2

(z− ξ1)(z− ξ3)(z− ξ4)
.

Then g is holomorphic on K1(ξ1) and h is holomorphic on K1(ξ2). We get by the Cauchy
Integral Formular:

1

2π · i

∮

K1(ξ1)

f (z)dz =
1

2π · i

∮

K1(ξ1)

�

z2

(z−ξ2)(z−ξ3)(z−ξ4)

�

z− ξ1
dz.

= g(ξ1) =
ξ2

1

(ξ1− ξ2)(ξ1− ξ3)(ξ1− ξ4)
.

The last equation uses the holomorphy of g on K1(ξ1). Analogously we can calculate the
other path integral.

(f) We can deform the two paths γ1(t) = ξ1+ e2πi t and γ2(t) = ξ2+ e2πi t to a loop γ surround-
ing ξ1 and ξ2 once with

∮

γ
f dz =

∮

γ1
f dz+

∮

γ2
f dz. This path is then homotopic to γr .

We can finally determine this path integral:

ξ1− ξ2 =
p

2

ξ1− ξ3 =
p

2 · (1+ i)
ξ1− ξ4 =

p
2 · i

ξ2− ξ1 = −
p

2

ξ2− ξ3 =
p

2 · i
ξ2− ξ4 =

p
2(−1+ i)

ξ2
1 = i
ξ2

2 = −i
∮

γr

f (z)dz = 2π · i ·
�

g(ξ1) + h(ξ2)
�

= 2π · i ·
�−1− i
p

2
+

1− i
p

2

�

=
π
p

2
.
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