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Groupwork

Exercise G1 (Standard estimations)

(a) Consider a continuous function f : [0,1] — C. Show

1 1
ff(t)dt sJ KOS
0 0

Hint: For each complex number z € C there is a complex number w € C such that w-z = |z|.

(b) Let © € C be a domain and f : Q — C be a continuous function. Further let y : [0,1] — Q
be an arbitrary path. Show the standard estimation for the complex path integral:

f f(z)dz
Y

Hints for solution: Since the integral is a complex number we can find a complex number
c € T (with |¢| = 1) such that

< sup {|f(y(e)I}-L(y) < o0.
t€[0,1]

1
c-J f(t)dt e R.
0

Now a simple calculation shows

1 1 1 1
c f f(t)dt = Re (J c -f(t)dt) =Re (f Re(c -f(t))dt—l—if Im(c -f(t))dt)
0 0 0 0

1
= J Re(c- f(t))dt.
0

1 1
J f(t)dt c-J f(t)dt
0 0

1 1
< J |Re(c-f(t))|dt§J |c- £(8)|dt
0 0

1
= J HOI:
0

This means

1
J Re(c- f(t))dt
0




A simple calculation shows:

f f(2)dz
Y

1
J flr()y'(e)de
0

1
< J F Gl Iy'(O)lde
0

t€[0,1]

= sup {|f(y()I}-L(y).

t€[0,1]

1
< f sup {If (y(eDI}-Iy'ldt
0

Since [0, 1] is compact and f is continuous on the curve of y we get that sup,cpq 17{|f (v(t))[}
exists and is finite.




Exercise G2 (Locally uniform convergence)

Let Q C C be a domain. If f : Q — C is an arbitrary function then we denote by f¥ for K C Q
the restriction of f on K, i. e. fX¥ : K — C, fX(2):= f(2).

Let f, : Q — C be a function for each n € N. We say the sequence (f,),cy converges locally
uniformly to a function f : Q — C if for each compact subset K € Q the sequence ( ff Jnen
converges uniformly to fX.

(a) Show: If (f,),ey converges locally uniformly to f then it converges pointwise to f.

(b) Show: If (f,),en converges locally uniformly to f and if the function f,, is continuous for
each n € N then f is continuous.

(c) Give an example of a locally uniformly convergent sequence which is not uniformly conver-
gent.

(d) Show: If (f,)nen converges locally uniformly to f then for every path y : [0,1] — Q we
have

lim f fo(z)dz = f f(z)dz.
n—o0 ¥ v

(e) Consider the domain Q := C \ {0} and the following rational functions:

Show that the sequence (f,,),ey converges locally uniformly to f(z) = ez and determine
1
the path integral le © ezdz.

Hints for solution:
(a) Since for every z € Q) the set {z} is compact we get pointwise convergence.

(b) Since € is open, every point z € €2 has a compact neighbourhood: Take a z € Q. Since Q is
open, there is an € > 0 such that K.(z) € Q. This means K(z) := Kfz(z) C K,.(z) € Q. Since
K(2) is a neighbourhood, every sequence in Q which converges to z has all but finitely many
elements of the sequence belonging to K(z). Thus f is continuous in z if f¥®) is continuous
in z.

Since the sequence converges uniformly on each compact subset of 2 to f, we have that
K& is continuous as uniform limit of continuous functions. Thus f is continuous in z € Q
and since z was arbitrary we have f is continuous on 2.

(c) The function sequence f,(2z) := ZZZO zk converges locally uniformly to i on D but not
uniformly since the limit function is unbounded and so every distance || f—=fa

o
(d) We set I" := y([0,1]). This set is compact. If £ > 0 is given we find a n, such that for every
n > n, we have

£

FORNO S =1




Using the standard estimation we get:

J‘J}(Z)dz-—‘f.f(Z)dz
r r

< fL&@%iﬂ@Mz
r

< L-L(}f)zs.
L(y)

This means of course lim,,_,, fr fou(z)dz = fr f(2)dz.

(e) Let K € Q compact. Then K’ := {1 : z € K} is compact, too. Further Y ;_. —~2z* converges
p g p k=0 k! &

locally uniformly to the exponential function (cf. Analysis II). Putting this together we get
the claim.
Using (d) and using

~1 o1 .
Z—'z dz=27‘c-1-—|=27‘c-l,
K1(0) k=0 <! 1

we get

f(z)dz =2m-1i.

K1(0)




Exercise G3 (Radius of convergence)

Let (a,),ey be @ monotonically decreasing null sequence and define the power series

o0

f(z):= Z a,z".

n=0

(a) Show that the radius of convergence of f is at least 1.
(b) Show that for eachz € T\ {1} = {z € C\ {1} : |z| = 1} the series converges.

Hint: Use D az" = - ((1 —2) Y akzk) and estimate the second term.

Hints for solution:

(a) Clear.
(b)
Xn:azk = L (1—2)-2n:azk
k 1—2 k
k=m k=m
2[a,|
< .
T |1—z

The last term is a Cauchy sequence so we get the claim.




Homework

Exercise H1 (Real parts of complex differentiable functions) (1 point)

Consider the polynomial p(x,y) := x? + 2axy + by? where a,b € R are parameters. Decide
for which choices a, b € R the polynomial is the real part of a complex differentiable function
f:C—-C,i.e.

p(x,y) =Ref(x +1iy).

On the other side if p(x,y) = Ref(x +iy) = Reg(x + iy) for complex differentiable functions
f,g : C — C what can you say about the relationship of f and g?

Hints for solution: We use the Cauchy Riemann Differential Equations and get

du B Jdv Jdu B dv
ox dy dy  Ix
We calculate

du du
— =2x+2ay —=— =2ax+2by.
dx dy

Since the integrability conditions have to be satisfied we get

*v o op o%v
oxdy ~ dydx
and conclude b = —1 and a could be arbitrary. This is true because v : R? — R is a potential for

(_@ ﬂ)T
oy’ ox’
Taking y(t) :=(x,y) -t with y : [0,1] — C and calculating the path integral we get

v(x,y)=a(y?—-x?)+2xy+C.

We have
flx+iy)=x*+2axy —y*+i-(a(y* —x*+2xy + C).

Of course the difference of two such functions must be strictly imaginary and constant.




Exercise H2 (The Gamma function) (1 point)

There are many connections between number theory and complex analysis. In this excercise we
construct a complex differentiable function I' : & — C which interpolates the factorials. We use
the following result:

Theorem: Let Q C C be a domain and let f : 2x]0, 0o[— C a function satisfying the following
three conditions:

(i) For every z € Q one has f;o If (z,t)|dt < 0.
(ii) For every t €]0, 0c0[ the function z — f (2, t) is complex differentiable.

(ii) For every compact disk K = K, (z,) € Q there is a positive function gx :]0,00[— R} with
|f (z,t)| < gg(t) for all t €]0,00[ and all z € K and one has

J gr(t)dt < oo.
0

Then the function F : Q — C,

F(z):= J fz,t)dt
0

is complex differentiable and its derivatives are given by

00 an
F(2) = J —f(z,t)dt.
o 0%

Now we use the domain 2, := {z € C: Re(z) > 0} which is the open right half complex plane.




(a) Show that the following statements are equivalent for Q = Q,:
(iii) For every compact disk K = K, (z,) S 2, there is a positive function gx :]0,00[— R
with |f(z,t)| < gg(t) for all t €]0,00[ and all z € K and one has

J gr(t)dt < oo.
0

(iii") For every compact rectangular K = [a, b] X i [c,d] € Q2 there is a positive function
gk 110, 00[— RY with |f (2, t)| < gg(t) for all t €]0,00[ and all z € K and one has

f gr(t)dt < oo.
0

(b) Show that

o0 o0
I (z):= J tCD.e7tdt = J (OG- o=ty
0 0

defines a complex differentiable function on Q.

(c) Show the following formulas:

F—i—(l) = 1:
r,(z+1) = z-T',(z) forallzeQ,.

Conclude I'  (n + 1) = n! which means the function I', is indeed a complex differentiable
interpolation of the factorials on the right complex half plane.

(d) Show that the function I, is bounded on the strip S := {z € C: 1 <Re(z) < 2}.
(e) Define Q,:=Q, and Q,; := {z € C:Re(z) > —n} \ {k € Z : k < 0}. Further define

fo:Q—C, folz) = T'i(z),

faz+1)
fn+1 : Qn+1 - (C’ fn-l—l(z) = T
Show: For all n € N the function f,, is complex differentiable and agrees on €, with f; for
all k < n. Thus there is a complex differentiable functionT': Q:=C\{k€Z:k <0} - C
with I'(z) = f,,(2) for every n e N and all z € Q,,.

(f) Show: For each n € N one has lim(,_,_.y(z + n)T'(z) = iy

n!
For completeness: The Theorem of H. Wieland states the following: Let 2 € C be a domain
such that © contains the vertical strip S. Then for any function f : Q — C with

(1) The function f is bounded on S,
(2) The function f satisfies f(z+1) =g f(z) forall z € Q,

one has f(z) = f(1)-T'(z) for all z € Q, i. e. the conditions (1) and (2) characterise the
I'-function up to a multiplicative constant.

Hints for solution:




(a) This follows easily because in €2, there is for each compact disk a compakt square con-
taining the disk and for each compact rectangular there is a compact disk containing the
rectangular.

(b) We can use the theorem if we check that the requirements are fullfilled. Set f(z,t) :=
t*le L,

(i) Let z € Q. be a fixed complex number and let x :=Re(z — 1) > —1. Then we have

00 1 [e's)
J If (z,t)|dt = J tx-e_tdt-l-J t¥-e tdt
0 0 1
1 00
< J tx‘e_tdt—I—J C-e 2dt
0 1

< 00+ 00=00,

where C > 0 is a suitable constant satisfiing t¥e™* < C - e2 on [1,00][.
(ii) The function e®~D1(0) . =t is for a fixed t €]0, co[ complex differentiable.
(iii) LetK = [a,b]@®i-[c,d] a compact rectangular in 2, . Then we use the same estimation
like above: For (z,t) € K we get
|f(Z, l.')| — |eln(t)(z—1) . e—t — |eln(t)~Re(z—1) . e—t|
< emax{ln(t),0}~(b—1) et

emax{ln(t),03-(b—1) _ ,—t _. gk ().

This function is integrable.
Since the requirements of the theorem are fullfilled we get I", is a complex differentiable
function on Q.

()
r.(1) =f t0 e7tdt =1.
0

o0 o0

tPe”tdt = —t*e | +2 J t*" 1. e7tdt = 2T, (2).
0
(d) Let 1 <Re(z) < 2. Using analogous decomposition of the Gamma integral we get

F+(z+1):J

0

o0 [0.9]

1
T, (2)| < J |f (2, t)ldt—I—J If (z,t)|dt <1 +J t-e tdt=:C < oo.
0 1 1
So the Gamma function is bounded on the strip S.
(e) The definition

i@ = 202

is on the set Q; a quotient of holomorphic functions, i. e. holomorphic. Thus by iteration
we get ' : Q — C is holomorphic.
It’s enough to show f,,1(2) = f,,(z) for all z € Q,,. But for z € 2,, we see

1 .
fra) = XD _ZhE)

since the functional equation holds. Thus we get the claim.




() We have in Q:

ZEIPH(Z +n)(z) = Z1_i>n_1n(z +n) [E+1) =..
_ I'z+n+1) _ i I'z+n+1)
= A D ) A G i)
r'(1)

1
e e I e (=17 n

10



