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Groupwork

Exercise G1 (Standard estimations)

(a) Consider a continuous function f : [0, 1]→ C. Show
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�

�

�

∫ 1

0

f (t)d t

�

�

�

�

�

≤
∫ 1

0

�

� f (t)
�

�d t.

Hint: For each complex number z ∈ C there is a complex numberω ∈ C such thatω·z = |z|.
(b) Let Ω ⊆ C be a domain and f : Ω→ C be a continuous function. Further let γ : [0,1]→ Ω

be an arbitrary path. Show the standard estimation for the complex path integral:
�

�

�

�

�

∫

γ

f (z)dz

�

�

�

�

�

≤ sup
t∈[0,1]

{| f (γ(t))|} · L(γ)<∞.

Hints for solution: Since the integral is a complex number we can find a complex number
c ∈ T (with |c|= 1) such that

c ·
∫ 1

0

f (t)d t ∈ R.

Now a simple calculation shows

c ·
∫ 1

0

f (t)d t = Re

 

∫ 1

0

c · f (t)d t

!

= Re

 

∫ 1

0

Re(c · f (t))d t + i

∫ 1

0

Im(c · f (t))d t

!

=

∫ 1

0

Re(c · f (t))d t.

This means
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∫ 1

0

f (t)d t

�

�

�

�

�

=
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�

�

�

�

c ·
∫ 1

0

f (t)d t

�

�

�

�

�

=

�

�

�

�

�

∫ 1

0

Re(c · f (t))d t

�

�

�

�

�

≤
∫ 1

0

�

�Re(c · f (t))
�

�d t ≤
∫ 1

0

�

�c · f (t)
�

�d t

=

∫ 1

0

�

� f (t)
�

�d t.
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A simple calculation shows:

�

�

�

�

�

∫

γ

f (z)dz

�

�

�

�

�

=

�

�

�

�

�

∫ 1

0

f (γ(t))γ′(t)d t

�

�

�

�

�

≤
∫ 1

0

| f (γ(t))| · |γ′(t)|d t

≤
∫ 1

0

sup
t∈[0,1]

{| f (γ(t))|} · |γ′|d t

= sup
t∈[0,1]

{| f (γ(t))|} · L(γ).

Since [0, 1] is compact and f is continuous on the curve of γ we get that supt∈[0,1]{| f (γ(t))|}
exists and is finite.

2



Exercise G2 (Locally uniform convergence)

Let Ω ⊆ C be a domain. If f : Ω→ C is an arbitrary function then we denote by f K for K ⊆ Ω
the restriction of f on K , i. e. f K : K → C, f K(z) := f (z).
Let fn : Ω → C be a function for each n ∈ N. We say the sequence ( fn)n∈N converges locally
uniformly to a function f : Ω → C if for each compact subset K ⊆ Ω the sequence ( f K

n )n∈N
converges uniformly to f K .

(a) Show: If ( fn)n∈N converges locally uniformly to f then it converges pointwise to f .

(b) Show: If ( fn)n∈N converges locally uniformly to f and if the function fn is continuous for
each n ∈ N then f is continuous.

(c) Give an example of a locally uniformly convergent sequence which is not uniformly conver-
gent.

(d) Show: If ( fn)n∈N converges locally uniformly to f then for every path γ : [0,1] → Ω we
have

lim
n→∞

∫

γ

fn(z)dz =

∫

γ

f (z)dz.

(e) Consider the domain Ω := C \ {0} and the following rational functions:

fn(z) :=
n
∑

k=0

1

k!
·

1

zk
.

Show that the sequence ( fn)n∈N converges locally uniformly to f (z) = e
1
z and determine

the path integral
∮

K1(0)
e

1
z dz.

Hints for solution:

(a) Since for every z ∈ Ω the set {z} is compact we get pointwise convergence.

(b) Since Ω is open, every point z ∈ Ω has a compact neighbourhood: Take a z ∈ Ω. Since Ω is
open, there is an ε > 0 such that Kε(z)⊆ Ω. This means K(z) := K ε

42
(z)⊂ Kε(z)⊆ Ω. Since

K(z) is a neighbourhood, every sequence in Ωwhich converges to z has all but finitely many
elements of the sequence belonging to K(z). Thus f is continuous in z if f K(z) is continuous
in z.
Since the sequence converges uniformly on each compact subset of Ω to f , we have that
f K(z) is continuous as uniform limit of continuous functions. Thus f is continuous in z ∈ Ω
and since z was arbitrary we have f is continuous on Ω.

(c) The function sequence fn(z) :=
∑n

k=0 zk converges locally uniformly to 1
1−z

on D but not

uniformly since the limit function is unbounded and so every distance


 f − fn





∞.

(d) We set Γ := γ([0,1]). This set is compact. If ε > 0 is given we find a n0 such that for every
n> n0 we have

| fn(z)− f (z)| ≤
ε

L(γ)
.
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Using the standard estimation we get:

�

�

�

�

�

∫

Γ

fn(z)dz−
∫

Γ

f (z)dz

�

�

�

�

�

≤
∫

Γ

| fn(z)− f (z)|dz

≤
ε

L(γ)
· L(γ) = ε.

This means of course limn→∞
∫

Γ
fn(z)dz =

∫

Γ
f (z)dz.

(e) Let K ⊆ Ω compact. Then K ′ := {1
z

: z ∈ K} is compact, too. Further
∑n

k=0
1
k!

zk converges
locally uniformly to the exponential function (cf. Analysis II). Putting this together we get
the claim.
Using (d) and using

∮

K1(0)

n
∑

k=0

1

k!
z−kdz = 2π · i ·

1

1!
= 2π · i,

we get
∮

K1(0)

f (z)dz = 2π · i.
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Exercise G3 (Radius of convergence)

Let (an)n∈N be a monotonically decreasing null sequence and define the power series

f (z) :=
∞
∑

n=0

anzn.

(a) Show that the radius of convergence of f is at least 1.

(b) Show that for each z ∈ T \ {1}= {z ∈ C \ {1} : |z|= 1} the series converges.

Hint: Use
∑n

k=m akzk = 1
1−z
·
�

(1− z) ·
∑n

k=m akzk
�

and estimate the second term.

Hints for solution:

(a) Clear.

(b)
�

�

�

�

�

n
∑

k=m

akzk

�

�

�

�

�

=

�

�

�

�

1

1− z

�

�

�

�

�

�

�

�

�

(1− z) ·
n
∑

k=m

akzk

�

�

�

�

�

≤
�

�

�

�

2|am|
1− z

�

�

�

�

.

The last term is a Cauchy sequence so we get the claim.
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Homework

Exercise H1 (Real parts of complex differentiable functions) (1 point)

Consider the polynomial p(x , y) := x2 + 2ax y + b y2 where a, b ∈ R are parameters. Decide
for which choices a, b ∈ R the polynomial is the real part of a complex differentiable function
f : C→ C, i. e.

p(x , y) = Re f (x + i y).

On the other side if p(x , y) = Re f (x + i y) = Reg(x + i y) for complex differentiable functions
f , g : C→ C what can you say about the relationship of f and g?

Hints for solution: We use the Cauchy Riemann Differential Equations and get

∂ u

∂ x
=
∂ v

∂ y

∂ u

∂ y
=−

∂ v

∂ x
.

We calculate
∂ u

∂ x
= 2x + 2a y

∂ u

∂ y
= 2ax + 2b y.

Since the integrability conditions have to be satisfied we get

∂ 2v

∂ x∂ y
= 2=−2b =

∂ 2v

∂ y∂ x

and conclude b =−1 and a could be arbitrary. This is true because v : R2→ R is a potential for
(− ∂ u

∂ y
, ∂ u
∂ x
)T .

Taking γ(t) := (x , y) · t with γ : [0, 1]→ C and calculating the path integral we get

v (x , y) = a(y2− x2) + 2x y + C .

We have

f (x + i y) = x2+ 2ax y − y2+ i · (a(y2− x2+ 2x y + C).

Of course the difference of two such functions must be strictly imaginary and constant.
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Exercise H2 (The Gamma function) (1 point)

There are many connections between number theory and complex analysis. In this excercise we
construct a complex differentiable function Γ : Ω→ C which interpolates the factorials. We use
the following result:
Theorem: Let Ω ⊆ C be a domain and let f : Ω×]0,∞[→ C a function satisfying the following
three conditions:

(i) For every z ∈ Ω one has
∫∞

0
| f (z, t)|d t <∞.

(ii) For every t ∈]0,∞[ the function z→ f (z, t) is complex differentiable.

(iii) For every compact disk K = Kr(z0) ⊆ Ω there is a positive function gK :]0,∞[→ R+0 with
| f (z, t)| ≤ gK(t) for all t ∈]0,∞[ and all z ∈ K and one has

∫ ∞

0

gK(t)d t <∞.

Then the function F : Ω→ C,

F(z) :=

∫ ∞

0

f (z, t)d t

is complex differentiable and its derivatives are given by

F (n)(z) =

∫ ∞

0

∂ n

∂ zn f (z, t)d t.

Now we use the domain Ω+ := {z ∈ C : Re(z)> 0} which is the open right half complex plane.
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(a) Show that the following statements are equivalent for Ω = Ω+:
(iii) For every compact disk K = Kr(z0) ⊆ Ω+ there is a positive function gK :]0,∞[→ R+0

with | f (z, t)| ≤ gK(t) for all t ∈]0,∞[ and all z ∈ K and one has

∫ ∞

0

gK(t)d t <∞.

(iii’) For every compact rectangular K = [a, b]× i · [c, d] ⊆ Ω+ there is a positive function
gK :]0,∞[→ R+0 with | f (z, t)| ≤ gK(t) for all t ∈]0,∞[ and all z ∈ K and one has

∫ ∞

0

gK(t)d t <∞.

(b) Show that

Γ+(z) :=

∫ ∞

0

t(z−1) · e−t d t :=

∫ ∞

0

eln(t)·(z−1) · e−t d t

defines a complex differentiable function on Ω+.

(c) Show the following formulas:

Γ+(1) = 1,

Γ+(z+ 1) = z ·Γ+(z) for all z ∈ Ω+.

Conclude Γ+(n+ 1) = n! which means the function Γ+ is indeed a complex differentiable
interpolation of the factorials on the right complex half plane.

(d) Show that the function Γ+ is bounded on the strip S := {z ∈ C : 1≤ Re(z)≤ 2}.
(e) Define Ω0 := Ω+ and Ωn+1 := {z ∈ C : Re(z)>−n} \ {k ∈ Z : k ≤ 0}. Further define

f0 : Ω0→ C, f0(z) := Γ+(z),

fn+1 : Ωn+1→ C, fn+1(z) :=
fn(z+ 1)

z
.

Show: For all n ∈ N the function fn is complex differentiable and agrees on Ωk with fk for
all k ≤ n. Thus there is a complex differentiable function Γ : Ω := C \ {k ∈ Z : k ≤ 0} → C
with Γ(z) = fn(z) for every n ∈ N and all z ∈ Ωn.

(f) Show: For each n ∈ N one has lim(z→−n)(z+ n)Γ(z) = (−1)n

n!
.

For completeness: The Theorem of H. Wieland states the following: Let Ω ⊆ C be a domain
such that Ω contains the vertical strip S. Then for any function f : Ω→ C with

(1) The function f is bounded on S,

(2) The function f satisfies f (z+ 1) = z · f (z) for all z ∈ Ω,

one has f (z) = f (1) · Γ(z) for all z ∈ Ω, i. e. the conditions (1) and (2) characterise the
Γ-function up to a multiplicative constant.

Hints for solution:
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(a) This follows easily because in Ω+ there is for each compact disk a compakt square con-
taining the disk and for each compact rectangular there is a compact disk containing the
rectangular.

(b) We can use the theorem if we check that the requirements are fullfilled. Set f (z, t) :=
tz−1e−t .
(i) Let z ∈ Ω+ be a fixed complex number and let x := Re(z− 1)>−1. Then we have

∫ ∞

0

| f (z, t)|d t =

∫ 1

0

t x · e−t d t +

∫ ∞

1

t x · e−t d t

≤
∫ 1

0

t x · e−t d t +

∫ ∞

1

C · e−
t
2 d t

< ∞+∞=∞,

where C > 0 is a suitable constant satisfiing t x e−t ≤ C · e−
t
2 on [1,∞[.

(ii) The function e(z−1)·ln(t) · e−t is for a fixed t ∈]0,∞[ complex differentiable.
(iii) Let K = [a, b]⊕ i ·[c, d] a compact rectangular in Ω+. Then we use the same estimation

like above: For (z, t) ∈ K we get

| f (z, t)| = |eln(t)(z−1) · e−t = |eln(t)·Re(z−1) · e−t |
≤ emax{ln(t),0}·(b−1) · e−t

= emax{ln(t),0}·(b−1) · e−t =: gK(t).

This function is integrable.
Since the requirements of the theorem are fullfilled we get Γ+ is a complex differentiable
function on Ω+.

(c)

Γ+(1) =

∫ ∞

0

t0 · e−t d t = 1.

Γ+(z+ 1) =

∫ ∞

0

tze−t d t =−tze−t |∞0 + z ·
∫ ∞

0

tz−1 · e−t d t = zΓ+(z).

(d) Let 1≤ Re(z)≤ 2. Using analogous decomposition of the Gamma integral we get

|Γ+(z)| ≤
∫ 1

0

| f (z, t)|d t +

∫ ∞

1

| f (z, t)|d t ≤ 1+

∫ ∞

1

t · e−t d t =: C <∞.

So the Gamma function is bounded on the strip S.
(e) The definition

f1(z) :=
f0(z)

z
is on the set Ω1 a quotient of holomorphic functions, i. e. holomorphic. Thus by iteration
we get Γ : Ω→ C is holomorphic.
It’s enough to show fn+1(z) = fn(z) for all z ∈ Ωn. But for z ∈ Ωn we see

fn+1(z) =
fn(z+ 1)

z
=

z · fn(z)
z

= fn(z)

since the functional equation holds. Thus we get the claim.

9



(f) We have in Ω:

lim
z→−n
(z+ n)Γ(z) = lim

z→−n
(z+ n)

Γ(z+ 1)
z

= ...

= lim
z→−n
(z+ n)

Γ(z+ n+ 1)
z · (z+ 1) · ... · (z+ n)

= lim
z→−n

Γ(z+ n+ 1)
z · (z+ 1) · ... · (z+ n− 1)

=
Γ(1)

(−n) · (−n+ 1) · ... · (−1)
= (−1)n ·

1

n!
.

10


