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Groupwork

Exercise G1 (The standard estimation)

Let f : R" © Q — R" be a continuous vector field and y : [0,1] — Q a piecewise continuously
differentiable path. Show the following estimation:
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where L(y) denotes the legth of y.
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Hints for solution: Since y : [0,1] — Q is continuous the function [0,1] >t — ||f(}/(t))|| eR
is continuous and has a maximum K € R, cause [0, 1] is compact. So we see
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Exercise G2 (Winding around the origin)

Consider the vector field

. 2 L, R2 xy._ 1 -y
JHEMOP = f(y) '_x2+y2(X)

and the two star shaped domains G; := R?\ {(x,0) : x <0} and G, := R?\ {(x,0) : x > 0}.

(a) Show that f has a potential on G; and a potential on G, and determine them.

Hint: Use the polar decomposition: y(t) = r(t)- (2?1:((5((3))) .
(b) Is there a global potential for f on R?\ {0}?
(c) Consider paths of the following form:
A
c:
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Show for the (improper) path integral that f . fds = a, where a € [0,27[ is the included
angle of the path.

(d) Determine the path integral for the following counterclockwise parametrised curves:
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The number ﬁ fY f ds is called the winding number of y in O for a loop y . Why?
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Hints for solution:

(a) The polar decomposition ® induces diffeomorphisms ®; : G; —]0,00[x] — m, [ and @, :

G, —]0,00[x]0,27][.
Using this fact any loop y in G, or G, resp. has a unique representation
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where r is a loop in ]0,00[ and ¢ is a loop in ] — 7, [ or ]0, 27| resp. We get
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So every loop integral vanishes. That implies the existence of primitives F; and F,. An

analogous calculation shows

Fl(x:y): @,




Fz(X:J’):‘P_TC

where ¢ is the argument of (x, y) in its polar decomposition.

For finding the primitives: We integrate a path starting in (1,0) and ending in (x, y) for F;
and a path starting in (—1,0) and ending in (x, y) for F,.

cos(27t)
sin(27t)
Y1,Y2, Y3 and y,, describing a quarter of the path y: y; : (1,0) — (0,1), vy, : (0,1) —
(-1,0), y53:(—=1,0) = (0,—1) and y,4 : (0,—1) — (1,0). This makes it possible to calculate
the path integral by using both primitives F; and F,, since every sub path is completely in
G, orin Gy. Using y =y + 75+ 73+ 74 We see

des=27'c.
Y

There can’t exist a potential for f on R?\ {0}.

(b) Consider the path y(t) = . We can decompose this loop in a sum of four paths

(c) In (a) we see the path integral f . f ds vanishes for paths with constant ¢(t). So the value
of the improper path integral is a.

(d) 2m, 4m, 27, O.




Exercise G3 (Path integrals and potentials)

In the lectures we will see that a vector field f : R" — R has a potential if and only if its Jacobian
J¢(x) is symmetric for all x € R".

Decide whether the following vector fields have a potential. Determine the potential if it exists.

f: R? - R?, flx,y) := (ny3 + cos(x), 3x2y2 + cos(y))T,
g:RP->R glx,y,2) == (1+y(1+x), x(1+2), xy),
h:R? - R? h(x,y) = (y-ev, x-e7 +1)7T.

Hints for solution: Only f and h have a potential:

F(x,y) = x*-y3+sin(x)+sin(y)
H(x,y) = eV +y.

Of course the potentials are only unique up to a additive constant.
Compute J, g, =1+ x and 0,8, = 1+ z. We see, the Jacobian J,(0, 0, 1) is not symmetric.




Homework

Exercise H1 (Equivalence of paths) (1 point)

(a) Show that the equivalence of paths is an equivalence relation.

(b) Let f : R" © Q2 — R" be a continuous vector field. Prove that for equivalent paths
y1:la,b] = Qand y,: [c,d] — Q one has fhfds = fyzfds.

Hints for solution:
(a) Easy

(b) Lety : [a,b] — Q and ¢ : [a,b] — [c,d] be a diffeomorphism with positive derivative.
Then we see
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Exercise H2 (Connectedness and pathwise connectedness) (1 point)

(@

(b)
(©

Let & € R" be open and fix a point x € Q. Consider the set G, = {y € Q :
there is a continuous curve y : [0,1] — Q with y(0) = x and y(1) = y}. Show that
G, is open and closed in £, i. e. open and closed in the metric space (£, ||-||5).

Let Q € R" be open. Prove that Q is connected if and only if Q is pathwise connected.

Let O € R" be a domain. Show that for every x,y € Q there is a piecewise linear path
y :[0,1] — Q with y(0) = x and y(1) = y.

Hints for solution:

(@

(b)

(o)

We show G, is open. Let y € G, be arbitrary. Then there is an € > 0 such that K.(y) € Q.
Since K,(y) is convex, K.(y) is pathwise connected: For every z € K.(y) there is a path
7z : [0,1] — Q which starts in y and ends in z. Since there is a path y, starting in x and
ending in y, the path y :=y, + v, is a path starting in x and ending in z.

We show G, is closed in Q. Let y € Q with y € G,.. Since  is open, there is a neighbour-
hood K,(y) € Q. Of course K,(y) NG, is not empty, cause y is a accumulation point of G,.
Since K,(y) is convex, we conclude the assertion.

We have only to show that connectedness implies pathwise connectedness. By (a) we see
that for every x € Q the set G, is open and closed in Q. Since Q2 is connected we follow
G, =0 or G, = Q. With x € G, the assertion follows.

Let x, y € Q be arbitrary points. Since (2 is pathwise connected there is a path y : [0,1] — Q
starting in x and ending in y. Let K := y([0,1]). Of course K is compact. We define an
open covering: Choose for each t € [0,1] a convex open set U, € Q with y(t) € U,.
This is possible because 2 is open. The family (U, ).c[o 1] covers K. From compactness we
conclude: There are finitely many t; < t, < ... < t,_; points in [0,1] with K € U, U...U
U, ,- Choose ty =0 and t,, = 1 we of course have

K SU,UU, U..UU, UU, SQ.
Since every U,, is convex and has non empty intersection with U,, ,, we can choose points
X S Uk N Uk+1 .

The piecewisellinear path v, : X = X9 = Xy = Xy — ... = X,,_; — Y is contained in
e
Up U U, U J,_; Uk So we are done.




Exercise H3 (Potentials) (1 point)

(a) Let Q € R" be a domain and f : 2 — R" be a continuous vector field. Assume F; : @ — R
and F, : Q2 — R are potentials for f. Show that F; — F, is a constant function.

(b) Let © be an arbitrary nonempty open subset of R" and f : Q2 — R" be a continuous vector
field. Assume F; : 2 — R and F, : Q — R are potentials for f. What can you say about the
difference function F; — F,?

Hints for solution:

(a) Assume VF; = VF, and let G := F; — F,. We have VG = 0 and have to show that G is
constant. Fix a point x €  and consider the set

U:={yeQ: G(y)=G(x)}.

Of course U is a closed set in 2. We show that U is open: Let y € U arbitrary. Since
is open there is a e-neighbourhood K, := K.(y) with K, € Q. Since K, is convex we can
apply the Schrankensatz: For each z € K, we have

|60 -6@)| < |y -2 ey VG =0,

We see K, € U so U is indeed open. Since U is not empty we conclude U = Q cause ( is
connected. This means G is constant.

(b) The function is locally constant by (a). Locally constant means, on every pathwise con-
nected open subset U of Q we have G, is a constant function. For example the function

f:10,1[U]42, 0[— R,
_ |42 x€]0,1],
fe)= {0 x €]42,00[

is locally constant.




