Analysis III - Complex Analysis Hints for solution for the 3. Exercise Sheet

Prof. Dr. Burkhard Kümmerer
November 15, 2011
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (The standard estimation)
Let $f: \mathbb{R}^{n} \supseteq \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field and $\gamma:[0,1] \rightarrow \Omega$ a piecewise continuously differentiable path. Show the following estimation:

$$
\left|\int_{\gamma} f d s\right| \leq \max \left\{\|f(\gamma(t))\|_{2}: 0 \leq t \leq 1\right\} \cdot L(\gamma),
$$

where $L(\gamma)$ denotes the legth of γ.
Hints for solution: Since $\gamma:[0,1] \rightarrow \Omega$ is continuous the function $[0,1] \ni t \rightarrow\|f(\gamma(t))\| \in \mathbb{R}$ is continuous and has a maximum $K \in \mathbb{R}$, cause [0,1] is compact. So we see

$$
\begin{aligned}
\left|\int_{\gamma} f d s\right| & =\mid \int_{0}^{1}\left\langle f\left(\gamma(t), \gamma^{\prime}(t)\right\rangle d t\right| \\
& \leq \int_{0}^{1} \mid\left\langle f\left(\gamma(t), \gamma^{\prime}(t)\right\rangle\right| d t \\
& \leq \int_{0}^{1} \| f\left(\gamma(t)\left\|_{2} \cdot\right\| \gamma^{\prime}(t) \|_{2} d t\right. \\
& \leq \int_{0}^{1} K \cdot\left\|\gamma^{\prime}(t)\right\|_{2} d t \\
& =K \cdot L(\gamma) .
\end{aligned}
$$

Exercise G2 (Winding around the origin)

Consider the vector field

$$
f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2}, \quad f\binom{x}{y}:=\frac{1}{x^{2}+y^{2}}\binom{-y}{x}
$$

and the two star shaped domains $G_{1}:=\mathbb{R}^{2} \backslash\{(x, 0): x \leq 0\}$ and $G_{2}:=\mathbb{R}^{2} \backslash\{(x, 0): x \geq 0\}$.
(a) Show that f has a potential on G_{1} and a potential on G_{2} and determine them.

Hint: Use the polar decomposition: $\gamma(t)=r(t) \cdot\binom{\cos (\varphi(t))}{\sin (\varphi(t))}$.
(b) Is there a global potential for f on $\mathbb{R}^{2} \backslash\{0\}$?
(c) Consider paths of the following form:

Show for the (improper) path integral that $\int_{\gamma} f d s=\alpha$, where $\alpha \in[0,2 \pi[$ is the included angle of the path.
(d) Determine the path integral for the following counterclockwise parametrised curves:

The number $\frac{1}{2 \pi} \int_{\gamma} f d s$ is called the winding number of γ in 0 for a loop γ. Why?

Hints for solution:

(a) The polar decomposition Φ induces diffeomorphisms $\left.\Phi_{1}: G_{1} \rightarrow\right] 0, \infty[\times]-\pi, \pi\left[\right.$ and Φ_{2} : $\left.G_{2} \rightarrow\right] 0, \infty[\times] 0,2 \pi[$.
Using this fact any loop γ in G_{1} or G_{2} resp. has a unique representation

$$
\gamma(t)=r(t) \cdot\binom{\cos (\varphi(t))}{\sin (\varphi(t))}
$$

where r is a loop in $] 0, \infty[$ and φ is a loop in $]-\pi, \pi[$ or $] 0,2 \pi[$ resp. We get

$$
\begin{aligned}
\int_{\gamma} f d t & =\int_{0}^{1}\left\langle f(\gamma(t)), \gamma^{\prime}(t)\right\rangle d t \\
& =\int_{0}^{1}\left\langle\frac{r(t)}{r(t)^{2}}\binom{-\sin (\varphi(t))}{\cos (\varphi(t))}, r(t) \cdot \varphi^{\prime}(t) \cdot\binom{-\sin (\varphi(t))}{\cos (\varphi(t))}+r^{\prime}(t) \cdot\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right\rangle d t \\
& =\int_{0}^{1} \varphi^{\prime}(t) d t=\varphi(1)-\varphi(0)=0
\end{aligned}
$$

So every loop integral vanishes. That implies the existence of primitives F_{1} and F_{2}. An analogous calculation shows

$$
F_{1}(x, y)=\varphi
$$

$$
F_{2}(x, y)=\varphi-\pi
$$

where φ is the argument of (x, y) in its polar decomposition.
For finding the primitives: We integrate a path starting in $(1,0)$ and ending in (x, y) for F_{1} and a path starting in $(-1,0)$ and ending in (x, y) for F_{2}.
(b) Consider the path $\gamma(t)=\binom{\cos (2 \pi t)}{\sin (2 \pi t)}$. We can decompose this loop in a sum of four paths $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and γ_{4}, describing a quarter of the path $\gamma: \gamma_{1}:(1,0) \rightarrow(0,1), \gamma_{2}:(0,1) \rightarrow$ $(-1,0), \gamma_{3}:(-1,0) \rightarrow(0,-1)$ and $\gamma_{4}:(0,-1) \rightarrow(1,0)$. This makes it possible to calculate the path integral by using both primitives F_{1} and F_{2}, since every sub path is completely in G_{1} or in G_{2}. Using $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}$ We see

$$
\int_{\gamma} f d s=2 \pi
$$

There can't exist a potential for f on $\mathbb{R}^{2} \backslash\{0\}$.
(c) In (a) we see the path integral $\int_{\gamma} f d s$ vanishes for paths with constant $\varphi(t)$. So the value of the improper path integral is α.
(d) $2 \pi, 4 \pi, 2 \pi, 0$.

Exercise G3 (Path integrals and potentials)
In the lectures we will see that a vector field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a potential if and only if its Jacobian $J_{f}(x)$ is symmetric for all $x \in \mathbb{R}^{n}$.
Decide whether the following vector fields have a potential. Determine the potential if it exists.

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \\
& g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \\
& h(x, y) \quad \\
& h(x, y, z) \\
& \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},
\end{aligned} \quad h(x, y) \quad:=\left(1+y y^{3}+\cos (x), 3 x^{2} y^{2}+\cos (y)\right)^{T}, ~\left(y \cdot e^{x y}, x \cdot e^{x y}+1\right)^{T} .
$$

Hints for solution: Only f and h have a potential:

$$
\begin{aligned}
F(x, y) & =x^{2} \cdot y^{3}+\sin (x)+\sin (y) \\
H(x, y) & =e^{x \cdot y}+y .
\end{aligned}
$$

Of course the potentials are only unique up to a additive constant.
Compute $\partial_{y} g_{1}=1+x$ and $\partial_{x} g_{2}=1+z$. We see, the Jacobian $J_{g}(0,0,1)$ is not symmetric.

Homework

Exercise H1 (Equivalence of paths)
(a) Show that the equivalence of paths is an equivalence relation.
(b) Let $f: \mathbb{R}^{n} \supseteq \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field. Prove that for equivalent paths $\gamma_{1}:[a, b] \rightarrow \Omega$ and $\gamma_{2}:[c, d] \rightarrow \Omega$ one has $\int_{\gamma_{1}} f d s=\int_{\gamma_{2}} f d s$.

Hints for solution:

(a) Easy
(b) Let $\gamma:[a, b] \rightarrow \Omega$ and $\varphi:[a, b] \rightarrow[c, d]$ be a diffeomorphism with positive derivative. Then we see

$$
\begin{aligned}
\int_{\gamma_{1}} f d s & =\int_{\gamma_{2} \circ \varphi} f d s \\
& =\int_{a}^{b}\left\langle f\left(\gamma_{2}(\varphi(t))\right), \gamma_{2}^{\prime}(\varphi(t))\right\rangle \cdot \varphi^{\prime}(t) d t \\
& =\int_{\varphi(a)}^{\varphi(b)}\left\langle f\left(\gamma_{2}(t)\right), \gamma_{2}^{\prime}(t)\right\rangle d t \\
& =\int_{\gamma_{2}} f d s
\end{aligned}
$$

Exercise H2 (Connectedness and pathwise connectedness)
(a) Let $\Omega \subseteq \mathbb{R}^{n}$ be open and fix a point $x \in \Omega$. Consider the set $G_{x}:=\{y \in \Omega$: there is a continuous curve $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=x$ and $\gamma(1)=y\}$. Show that G_{x} is open and closed in Ω, i. e. open and closed in the metric space $\left(\Omega,\|\cdot\|_{2}\right)$.
(b) Let $\Omega \subseteq \mathbb{R}^{n}$ be open. Prove that Ω is connected if and only if Ω is pathwise connected.
(c) Let $\Omega \subseteq \mathbb{R}^{n}$ be a domain. Show that for every $x, y \in \Omega$ there is a piecewise linear path $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=x$ and $\gamma(1)=y$.

Hints for solution:

(a) We show G_{x} is open. Let $y \in G_{x}$ be arbitrary. Then there is an $\varepsilon>0$ such that $K_{\varepsilon}(y) \subseteq \Omega$. Since $K_{\varepsilon}(y)$ is convex, $K_{\varepsilon}(y)$ is pathwise connected: For every $z \in K_{\varepsilon}(y)$ there is a path $\gamma_{z}:[0,1] \rightarrow \Omega$ which starts in y and ends in z. Since there is a path γ_{y} starting in x and ending in y, the path $\gamma:=\gamma_{z}+\gamma_{y}$ is a path starting in x and ending in z.
We show G_{x} is closed in Ω. Let $y \in \Omega$ with $y \in \overline{G_{x}}$. Since Ω is open, there is a neighbourhood $K_{\varepsilon}(y) \subseteq \Omega$. Of course $K_{\varepsilon}(y) \cap G_{x}$ is not empty, cause y is a accumulation point of G_{x}. Since $K_{\varepsilon}(y)$ is convex, we conclude the assertion.
(b) We have only to show that connectedness implies pathwise connectedness. By (a) we see that for every $x \in \Omega$ the set G_{x} is open and closed in Ω. Since Ω is connected we follow $G_{x}=\emptyset$ or $G_{x}=\Omega$. With $x \in G_{x}$ the assertion follows.
(c) Let $x, y \in \Omega$ be arbitrary points. Since Ω is pathwise connected there is a path $\gamma:[0,1] \rightarrow \Omega$ starting in x and ending in y. Let $K:=\gamma([0,1])$. Of course K is compact. We define an open covering: Choose for each $t \in[0,1]$ a convex open set $U_{t} \in \Omega$ with $\gamma(t) \in U_{t}$. This is possible because Ω is open. The family $\left(U_{t}\right)_{t \in[0,1]}$ covers K. From compactness we conclude: There are finitely many $t_{1}<t_{2}<\ldots<t_{n-1}$ points in [0,1] with $K \subseteq U_{t_{1}} \cup \ldots \cup$ $U_{t_{n-1}}$. Choose $t_{0}=0$ and $t_{n}=1$ we of course have

$$
K \subseteq U_{0} \cup U_{t_{1}} \cup \ldots \cup U_{t_{n-1}} \cup U_{1} \subseteq \Omega
$$

Since every $U_{t_{k}}$ is convex and has non empty intersection with $U_{t_{k+1}}$ we can choose points

$$
x_{k} \in U_{k} \cap U_{k+1} .
$$

The piecewise linear path $\gamma_{\text {new }}: x \rightarrow x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{n-1} \rightarrow y$ is contained in $U_{0} \cup U_{1} \cup \bigcup_{k=1}^{n-1} U_{k}$. So we are done.

Exercise H3 (Potentials)
(a) Let $\Omega \subseteq \mathbb{R}^{n}$ be a domain and $f: \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field. Assume $F_{1}: \Omega \rightarrow \mathbb{R}$ and $F_{2}: \Omega \rightarrow \mathbb{R}$ are potentials for f. Show that $F_{1}-F_{2}$ is a constant function.
(b) Let Ω be an arbitrary nonempty open subset of \mathbb{R}^{n} and $f: \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field. Assume $F_{1}: \Omega \rightarrow \mathbb{R}$ and $F_{2}: \Omega \rightarrow \mathbb{R}$ are potentials for f. What can you say about the difference function $F_{1}-F_{2}$?

Hints for solution:

(a) Assume $\nabla F_{1}=\nabla F_{2}$ and let $G:=F_{1}-F_{2}$. We have $\nabla G=0$ and have to show that G is constant. Fix a point $x \in \Omega$ and consider the set

$$
U:=\{y \in \Omega: G(y)=G(x)\} .
$$

Of course U is a closed set in Ω. We show that U is open: Let $y \in U$ arbitrary. Since Ω is open there is a ε-neighbourhood $K_{y}:=K_{\varepsilon}(y)$ with $K_{y} \subseteq \Omega$. Since K_{y} is convex we can apply the Schrankensatz: For each $z \in K_{y}$ we have

$$
\|G(y)-G(z)\| \leq\|y-z\| \cdot \max _{\xi \in\{t y+(1-t) z: 0 \leq t \leq 1\}}\|\nabla G(\xi)\|=0
$$

We see $K_{y} \subseteq U$ so U is indeed open. Since U is not empty we conclude $U=\Omega$ cause Ω is connected. This means G is constant.
(b) The function is locally constant by (a). Locally constant means, on every pathwise connected open subset U of Ω we have $G_{\left.\right|_{U}}$ is a constant function. For example the function $f:] 0,1[\cup] 42, \infty[\rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}42 & x \in] 0,1[\\ 0 & x \in] 42, \infty[\end{cases}
$$

is locally constant.

