Analysis III – Complex Analysis Hints for solution for the **3. Exercise Sheet**

TECHNISCHE UNIVERSITÄT DARMSTADT

WS 11/12

November 15, 2011

Department of Mathematics Prof. Dr. Burkhard Kümmerer Andreas Gärtner Walter Reußwig

Groupwork

Exercise G1 (The standard estimation)

Let $f : \mathbb{R}^n \supseteq \Omega \to \mathbb{R}^n$ be a continuous vector field and $\gamma : [0,1] \to \Omega$ a piecewise continuously differentiable path. Show the following estimation:

$$\left| \int_{\gamma} f \, ds \right| \leq \max \left\{ \left\| f(\gamma(t)) \right\|_2 : 0 \leq t \leq 1 \right\} \cdot L(\gamma),$$

where $L(\gamma)$ denotes the legth of γ .

Hints for solution: Since $\gamma : [0, 1] \to \Omega$ is continuous the function $[0, 1] \ni t \to ||f(\gamma(t))|| \in \mathbb{R}$ is continuous and has a maximum $K \in \mathbb{R}$, cause [0, 1] is compact. So we see

$$\begin{split} \left| \int_{\gamma} f \, ds \right| &= \left| \int_{0}^{1} \langle f(\gamma(t), \gamma'(t) \rangle dt \right| \\ &\leq \int_{0}^{1} \left| \langle f(\gamma(t), \gamma'(t) \rangle \right| dt \\ &\leq \int_{0}^{1} \left\| f(\gamma(t) \right\|_{2} \cdot \left\| \gamma'(t) \right\|_{2} dt \\ &\leq \int_{0}^{1} K \cdot \left\| \gamma'(t) \right\|_{2} dt \\ &= K \cdot L(\gamma). \end{split}$$

Exercise G2 (Winding around the origin)

Consider the vector field

$$f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2, \quad f\begin{pmatrix} x\\ y \end{pmatrix} := \frac{1}{x^2 + y^2} \begin{pmatrix} -y\\ x \end{pmatrix}$$

and the two star shaped domains $G_1 := \mathbb{R}^2 \setminus \{(x, 0) : x \leq 0\}$ and $G_2 := \mathbb{R}^2 \setminus \{(x, 0) : x \geq 0\}$.

- (a) Show that *f* has a potential on *G*₁ and a potential on *G*₂ and determine them. **Hint:** Use the polar decomposition: $\gamma(t) = r(t) \cdot \begin{pmatrix} \cos(\varphi(t)) \\ \sin(\varphi(t)) \end{pmatrix}$.
- (b) Is there a global potential for f on $\mathbb{R}^2 \setminus \{0\}$?
- (c) Consider paths of the following form:

Show for the (improper) path integral that $\int_{\gamma} f ds = \alpha$, where $\alpha \in [0, 2\pi[$ is the included angle of the path.

(d) Determine the path integral for the following counterclockwise parametrised curves:

The number $\frac{1}{2\pi} \int_{\gamma} f \, ds$ is called the *winding number* of γ in 0 for a loop γ . Why? **Hints for solution:**

(a) The polar decomposition Φ induces diffeomorphisms $\Phi_1 : G_1 \to]0, \infty[\times] - \pi, \pi[$ and $\Phi_2 : G_2 \to]0, \infty[\times]0, 2\pi[$.

Using this fact any loop γ in G_1 or G_2 resp. has a unique representation

$$\gamma(t) = r(t) \cdot \begin{pmatrix} \cos(\varphi(t)) \\ \sin(\varphi(t)) \end{pmatrix}$$

where r is a loop in]0, ∞ [and φ is a loop in] – π , π [or]0, 2π [resp. We get

$$\begin{split} \int_{\gamma} f dt &= \int_{0}^{1} \left\langle f(\gamma(t)), \gamma'(t) \right\rangle dt \\ &= \int_{0}^{1} \left\langle \frac{r(t)}{r(t)^{2}} \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix}, r(t) \cdot \varphi'(t) \cdot \begin{pmatrix} -\sin(\varphi(t)) \\ \cos(\varphi(t)) \end{pmatrix} + r'(t) \cdot \begin{pmatrix} \cos(\varphi(t)) \\ \sin(\varphi(t)) \end{pmatrix} \right\rangle dt \\ &= \int_{0}^{1} \varphi'(t) dt = \varphi(1) - \varphi(0) = 0. \end{split}$$

So every loop integral vanishes. That implies the existence of primitives F_1 and F_2 . An analogous calculation shows

$$F_1(x,y) = \varphi,$$

$$F_2(x,y) = \varphi - \pi$$

where φ is the argument of (x, y) in its polar decomposition.

For finding the primitives: We integrate a path starting in (1,0) and ending in (x, y) for F_1 and a path starting in (-1,0) and ending in (x, y) for F_2 .

(b) Consider the path $\gamma(t) = \begin{pmatrix} \cos(2\pi t) \\ \sin(2\pi t) \end{pmatrix}$. We can decompose this loop in a sum of four paths $\gamma_1, \gamma_2, \gamma_3$ and γ_4 , describing a quarter of the path γ : $\gamma_1 : (1,0) \rightarrow (0,1), \gamma_2 : (0,1) \rightarrow (-1,0), \gamma_3 : (-1,0) \rightarrow (0,-1)$ and $\gamma_4 : (0,-1) \rightarrow (1,0)$. This makes it possible to calculate the path integral by using both primitives F_1 and F_2 , since every sub path is completely in G_1 or in G_2 . Using $\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ We see

$$\int_{\gamma} f \, ds = 2\pi$$

There can't exist a potential for f on $\mathbb{R}^2 \setminus \{0\}$.

- (c) In (a) we see the path integral $\int_{\gamma} f \, ds$ vanishes for paths with constant $\varphi(t)$. So the value of the improper path integral is α .
- (d) 2π , 4π , 2π , 0.

Exercise G3 (Path integrals and potentials)

In the lectures we will see that a vector field $f : \mathbb{R}^n \to \mathbb{R}$ has a potential if and only if its Jacobian $J_f(x)$ is symmetric for all $x \in \mathbb{R}^n$.

Decide whether the following vector fields have a potential. Determine the potential if it exists.

$$\begin{aligned} f : \mathbb{R}^2 &\to \mathbb{R}^2, & f(x, y) &:= (2xy^3 + \cos(x), \ 3x^2y^2 + \cos(y))^T, \\ g : \mathbb{R}^3 &\to \mathbb{R}^3, & g(x, y, z) &:= (1 + y(1 + x), \ x(1 + z), \ xy)^T, \\ h : \mathbb{R}^2 &\to \mathbb{R}^2, & h(x, y) &:= (y \cdot e^{xy}, \ x \cdot e^{xy} + 1)^T. \end{aligned}$$

Hints for solution: Only *f* and *h* have a potential:

$$F(x,y) = x^2 \cdot y^3 + \sin(x) + \sin(y)$$

$$H(x,y) = e^{x \cdot y} + y.$$

Of course the potentials are only unique up to a additive constant.

Compute $\partial_y g_1 = 1 + x$ and $\partial_x g_2 = 1 + z$. We see, the Jacobian $J_g(0, 0, 1)$ is not symmetric.

Homework

Exercise H1 (Equivalence of paths)

(1 point)

- (a) Show that the equivalence of paths is an equivalence relation.
- (b) Let $f : \mathbb{R}^n \supseteq \Omega \to \mathbb{R}^n$ be a continuous vector field. Prove that for equivalent paths $\gamma_1 : [a, b] \to \Omega$ and $\gamma_2 : [c, d] \to \Omega$ one has $\int_{\gamma_1} f \, ds = \int_{\gamma_2} f \, ds$.

Hints for solution:

- (a) Easy
- (b) Let $\gamma : [a, b] \to \Omega$ and $\varphi : [a, b] \to [c, d]$ be a diffeomorphism with positive derivative. Then we see

$$\begin{split} \int_{\gamma_1} f ds &= \int_{\gamma_2 \circ \varphi} f ds \\ &= \int_a^b \left\langle f(\gamma_2(\varphi(t))), \gamma'_2(\varphi(t)) \right\rangle \cdot \varphi'(t) dt \\ &= \int_{\varphi(a)}^{\varphi(b)} \left\langle f(\gamma_2(t)), \gamma'_2(t) \right\rangle dt \\ &= \int_{\gamma_2} f ds. \end{split}$$

Exercise H2 (Connectedness and pathwise connectedness)

- (a) Let $\Omega \subseteq \mathbb{R}^n$ be open and fix a point $x \in \Omega$. Consider the set $G_x := \{y \in \Omega :$ there is a continuous curve $\gamma : [0,1] \to \Omega$ with $\gamma(0) = x$ and $\gamma(1) = y\}$. Show that G_x is open and closed in Ω , i. e. open and closed in the metric space $(\Omega, \|\cdot\|_2)$.
- (b) Let $\Omega \subseteq \mathbb{R}^n$ be open. Prove that Ω is connected if and only if Ω is pathwise connected.
- (c) Let $\Omega \subseteq \mathbb{R}^n$ be a domain. Show that for every $x, y \in \Omega$ there is a piecewise linear path $\gamma : [0,1] \to \Omega$ with $\gamma(0) = x$ and $\gamma(1) = y$.

Hints for solution:

(a) We show G_x is open. Let $y \in G_x$ be arbitrary. Then there is an $\varepsilon > 0$ such that $K_{\varepsilon}(y) \subseteq \Omega$. Since $K_{\varepsilon}(y)$ is convex, $K_{\varepsilon}(y)$ is pathwise connected: For every $z \in K_{\varepsilon}(y)$ there is a path $\gamma_z : [0,1] \to \Omega$ which starts in y and ends in z. Since there is a path γ_y starting in x and ending in y, the path $\gamma := \gamma_z + \gamma_y$ is a path starting in x and ending in z. We show G_x is closed in Ω . Let $y \in \Omega$ with $y \in \overline{G_x}$. Since Ω is open, there is a neighbour-

hood $K_{\varepsilon}(y) \subseteq \Omega$. Of course $K_{\varepsilon}(y) \cap G_x$ is not empty, cause y is a accumulation point of G_x . Since $K_{\varepsilon}(y)$ is convex, we conclude the assertion.

- (b) We have only to show that connectedness implies pathwise connectedness. By (a) we see that for every x ∈ Ω the set G_x is open and closed in Ω. Since Ω is connected we follow G_x = Ø or G_x = Ω. With x ∈ G_x the assertion follows.
- (c) Let $x, y \in \Omega$ be arbitrary points. Since Ω is pathwise connected there is a path $\gamma : [0, 1] \to \Omega$ starting in x and ending in y. Let $K := \gamma([0, 1])$. Of course K is compact. We define an open covering: Choose for each $t \in [0, 1]$ a convex open set $U_t \in \Omega$ with $\gamma(t) \in U_t$. This is possible because Ω is open. The family $(U_t)_{t \in [0,1]}$ covers K. From compactness we conclude: There are finitely many $t_1 < t_2 < ... < t_{n-1}$ points in [0, 1] with $K \subseteq U_{t_1} \cup ... \cup$ $U_{t_{n-1}}$. Choose $t_0 = 0$ and $t_n = 1$ we of course have

$$K \subseteq U_0 \cup U_{t_1} \cup \ldots \cup U_{t_{n-1}} \cup U_1 \subseteq \Omega.$$

Since every U_{t_k} is convex and has non empty intersection with $U_{t_{k+1}}$ we can choose points

$$x_k \in U_k \cap U_{k+1}$$

The piecewise linear path $\gamma_{new} : x \to x_0 \to x_1 \to x_2 \to \dots \to x_{n-1} \to y$ is contained in $U_0 \cup U_1 \cup \bigcup_{k=1}^{n-1} U_k$. So we are done.

Exercise H3 (Potentials)

(1 point)

- (a) Let $\Omega \subseteq \mathbb{R}^n$ be a domain and $f : \Omega \to \mathbb{R}^n$ be a continuous vector field. Assume $F_1 : \Omega \to \mathbb{R}$ and $F_2 : \Omega \to \mathbb{R}$ are potentials for f. Show that $F_1 F_2$ is a constant function.
- (b) Let Ω be an arbitrary nonempty open subset of \mathbb{R}^n and $f : \Omega \to \mathbb{R}^n$ be a continuous vector field. Assume $F_1 : \Omega \to \mathbb{R}$ and $F_2 : \Omega \to \mathbb{R}$ are potentials for f. What can you say about the difference function $F_1 F_2$?

Hints for solution:

(a) Assume $\nabla F_1 = \nabla F_2$ and let $G := F_1 - F_2$. We have $\nabla G = 0$ and have to show that *G* is constant. Fix a point $x \in \Omega$ and consider the set

$$U := \{ y \in \Omega : G(y) = G(x) \}.$$

Of course *U* is a closed set in Ω . We show that *U* is open: Let $y \in U$ arbitrary. Since Ω is open there is a ε -neighbourhood $K_y := K_{\varepsilon}(y)$ with $K_y \subseteq \Omega$. Since K_y is convex we can apply the Schrankensatz: For each $z \in K_y$ we have

$$||G(y) - G(z)|| \le ||y - z|| \cdot \max_{\xi \in \{ty + (1-t)z: \ 0 \le t \le 1\}} ||\nabla G(\xi)|| = 0.$$

We see $K_y \subseteq U$ so U is indeed open. Since U is not empty we conclude $U = \Omega$ cause Ω is connected. This means G is constant.

(b) The function is locally constant by (a). Locally constant means, on every pathwise connected open subset *U* of Ω we have G_{|U} is a constant function. For example the function *f* :]0,1[∪]42,∞[→ ℝ,

$$f(x) = \begin{cases} 42 & x \in]0, 1[, \\ 0 & x \in]42, \infty[\end{cases}$$

is locally constant.