Analysis III - Complex Analysis Hints for solution for the
 2. Exercise Sheet

Prof. Dr. Burkhard Kümmerer
November 1, 2011
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (Cauchy-Riemann differential equations I)
Consider the function $f(z):=e^{z}$. Use the Cauchy-Riemann differential equations to prove that f is differentiable on the whole complex plane.
Hints for solution: We compute the real vector field for f :

$$
\begin{aligned}
F(x, y) & =\binom{\operatorname{Re} f(x+y \cdot i)}{\operatorname{Im} f(x+y \cdot i)}=\binom{\operatorname{Re}\left(e^{x} \cdot e^{y i}\right)}{\operatorname{Im}\left(e^{x} \cdot e^{y i}\right)} \\
& =\binom{e^{x} \cdot \cos (y)}{e^{x} \cdot \sin (y)} .
\end{aligned}
$$

The Jacobian von F is of course:

$$
J_{F}(x, y)=e^{x} \cdot\left(\begin{array}{cc}
\cos (y) & -\sin (y) \\
\sin (y) & \cos (y)
\end{array}\right) .
$$

The Cauchy-Riemann differential equations are obviously satisfied.

Exercise G2 (Cauchy-Riemann differential equations II)
Consider the function $f(x+y \cdot i):=x^{3} \cdot y^{2}+x^{2} \cdot y^{3} \cdot i$ defined on the whole complex plane. Determine the subset $\Omega \subseteq \mathbb{C}$ on which f has a complex derivative. Is there an inner point $z_{0} \in \Omega$?
Hints for solution: We compute the real vector field for f :

$$
F(x, y)=\binom{\operatorname{Re} f(x+y \cdot i)}{\operatorname{Im} f(x+y \cdot i)}=\binom{x^{3} \cdot y^{2}}{x^{2} \cdot y^{3}}
$$

The Jacobian von F is of course:

$$
J_{F}(x, y)=\left(\begin{array}{cc}
3 x^{2} \cdot y^{2} & 2 x^{3} \cdot y \\
2 x \cdot y^{3} & 3 x^{2} \cdot y^{2}
\end{array}\right) .
$$

The Cauchy-Riemann differential equations are satisfied, iff $x=0$ or $y=0$. So we have

$$
\Omega=\{z \in \mathbb{C}: \operatorname{Re} z=0 \text { or } \operatorname{Im} z=0\} .
$$

Of course the interior of Ω is empty.

Exercise G3 (Path integrals)
Consider the vector field

$$
\mathbb{R}^{2} \ni(x, y) \rightarrow F(x, y):=\frac{1}{\left(x^{2}+y^{2}+1\right)^{2}}\binom{-x^{2}+y^{2}+1}{-2 x y} \in \mathbb{R}^{2}
$$

Determine $\int_{\gamma_{1}} F d s$ and $\int_{\gamma_{2}} F d s$ for the paths $\gamma_{1}:[-1,1] \rightarrow \mathbb{R}^{2}$ and $\gamma_{2}:[0, \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
\gamma_{1}(t):=\binom{-t}{0} \quad \text { and } \quad \gamma_{2}(t):=\binom{\cos (t)}{\sin (t)} .
$$

Hints for solution: We write in this hint for solution $x \cdot y:=\langle x, y\rangle$ for vectors x and y and we write vectors as row vectors.
Let $W:=\gamma_{1}$:

$$
W:[-1,1] \rightarrow \mathbb{R}^{2}, \quad W(t)=(-t, 0)
$$

and let $Z:=\gamma_{2}$:

$$
Z:[0, \pi] \rightarrow \mathbb{R}^{2}, \quad Z(t)=(\cos (t), \sin (t))
$$

We get

$$
\begin{gathered}
\int_{W} F d t=\int_{-1}^{1} F(W(t)) \cdot \dot{W}(t) d t=\int_{-1}^{1}\left(\frac{-t^{2}+1}{\left(t^{2}+1\right)^{2}}, 0\right) \cdot(-1,0) d t= \\
=\int_{-1}^{1} \frac{t^{2}-1}{\left(t^{2}+1\right)^{2}} d t=-\left.\frac{t}{t^{2}+1}\right|_{-1} ^{1}=-1 \\
\int_{Z} F d t=\int_{0}^{\pi} F(Z(t)) \cdot \dot{Z}(t) d t=\int_{0}^{\pi}\left(\frac{-\cos (2 t)+1}{4}, \frac{-\sin (2 t)}{4}\right) \cdot(-\sin (t), \cos (t)) d t= \\
=\int_{0}^{\pi} \frac{\cos (2 t) \sin (t)-\sin (t)-\sin (2 t) \cos (t)}{4} d t= \\
=\int_{0}^{\pi} \frac{\sin (-2 t) \cos (t)+\cos (-2 t) \sin (t)-\sin (t)}{4} d t=\int_{0}^{\pi} \frac{\sin (-2 t+t)-\sin (t)}{4} d t= \\
=\int_{0}^{\pi} \frac{-\sin (t)}{2} d t=\left.\frac{\cos (t)}{2}\right|_{0} ^{\pi}=-1 .
\end{gathered}
$$

Exercise G4 (Elementary properties of the path integral)
Let $F, G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable vector fields. Further let $\gamma, \gamma_{1}:[a, b] \rightarrow \mathbb{R}^{n}$ and $\gamma_{2}:[b, c] \rightarrow \mathbb{R}^{n}$ be continuously differentiable paths. Show that the path integral has the following properties:
(a) $\int_{\gamma} \lambda F+\mu G d s=\lambda \int_{\gamma} F d s+\mu \int_{\gamma} G d s$.
(b) $\int_{\gamma_{1}+\gamma_{2}} F d s=\int_{\gamma_{1}} F d s+\int_{\gamma_{2}} F d s$.
(c) If $\varphi:[\alpha, \beta] \rightarrow[a, b]$ is a diffeomorphism with $\varphi^{\prime}(t)>0$ then $\int_{\gamma} F d s=\int_{\gamma \circ \varphi} F d s$.

Interprete part (c) in the special case of a "vector field" $F: \mathbb{R} \supseteq[a, b] \rightarrow \mathbb{R}$ and the path $\gamma:[a, b] \rightarrow \mathbb{R}, \gamma(t)=t$.
Hints for solution: Standard Calculations. Part (c) is a multi dimensional version of integration by substitution.

Exercise G5 (Rotation of a vector field and a two dimensional version of Stoke's theorem)
Let $\Omega \subseteq \mathbb{R}^{2}$ be an open subset and $f: \mathbb{R}^{2} \supseteq \Omega \rightarrow \mathbb{R}^{2}$ be a continuously differentiable vector field. Further let $v \in \Omega$ be an arbitrary point and $\varepsilon>0$. Assume that the closed square with side length ε and center v is contained in Ω and let γ be the canonical parametrisation of the boundary of this square, i. e. it is counterclockwisely orientated.
(a) Prove that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \int_{\gamma} f d s=\operatorname{rot}(f)(v)
$$

where $\operatorname{rot}(f)(x, y):=\frac{\partial f_{2}}{\partial x}(x, y)-\frac{\partial f_{1}}{\partial y}(x, y)$ defines the rotation of f.
(b) Prove Stoke's theorem in the two dimensional case:

Let $f: \mathbb{R}^{2} \supseteq \Omega \rightarrow \mathbb{R}^{2}$ be a continuously differentiable vector field and $R:=[a, b] \times[c, d]$ be a rectangle with $R \subseteq \Omega$. If γ is the canonical parametrisation of the boundary of R then the following equation holds:

$$
\int_{\gamma} f d s=\int_{c}^{d} \int_{a}^{b} \operatorname{rot}(f)(x, y) d x d y
$$

Hint: Use Fubini's theorem.

Hints for solution:

This is purely analysis:

Homework

Exercise H1 (Connectedness and path-connectedness)
Let (X,d) a metric space. The space X is called connected, if the only subsets of X which are both open and closed are X and the empty set.
(a) Prove that the following conditions are equivalent:
(i) The space X is connected.
(ii) If $X=A \cup B$ for open sets A and B with $A \cap B=\emptyset$, then $A=\emptyset$ or $B=\emptyset$.
(iii) If $X=A \cup B$ for closed sets A and B with $A \cap B=\emptyset$, then $A=\emptyset$ or $B=\emptyset$.
(iv) Every continuous function $f: X \rightarrow\{0,1\}$ is constant.
(b) Is there a metric on \mathbb{R} such that (\mathbb{R}, d) is disconnected, i. e. not connected? Prove your claim.
(c) Show that every path connected metric space is connected.
(d) Let

$$
\Gamma:=\left\{\left(x, \sin \left(\frac{1}{x}\right)\right)^{T}: 0<x \leq 1\right\} \subseteq \mathbb{R}^{2} .
$$

Define $X:=\bar{\Gamma}$ where the closure is taken in the natural metric. Then (X, d) is a metric space with $d(x, y):=\|x-y\|_{2}$. Sketch the set X and show that X is connected but not path connected.

Hints for solution:

(a) (i) \Rightarrow (ii): Let $X=A \cup B$ with $A \cap B=\emptyset$ and A open and B open. Then $B=A^{C}$ is a closed set. So A is open and closed. By (i) we have $A \in\{\emptyset, X\}$ so $B \in\{\emptyset, X\}$.
(ii) \Leftrightarrow (iii) Cause $A=B^{C}$ and $B=A^{C}$ these conditions are trivially equivalent.
(ii) \Rightarrow (i) Let $A \subseteq X$ be open and closed. Then A^{C} is open and closed, too. Further we have $X=A \cup A^{C}$ with $A \cap A^{C}=\emptyset$. By (ii) we have $A \in\{\emptyset, X\}$, so there is no nontrivial open and closed subset of X.
(i) \Rightarrow (iv): Assume there is a surjective $f: X \rightarrow\{0,1\}$ then $A=f^{-1}(\{0\})$ is open and closed and not empty and $B=f^{-1}(\{1\})$ is open and closed and not empty since $\{0,1\}$ is discrete. So X is disconnected.
(iv) \Rightarrow (iii): Assume, $X=A \cup B$ with $A \cap B=\emptyset$ and A closed and B closed. Define

$$
f(x)= \begin{cases}1 & x \in A \\ 0 & x \in B\end{cases}
$$

Since the preimage of closed sets in $\{0,1\}$ is closed in X, the function f is continuous and not constant.
(b) Choose the discrete metric on \mathbb{R}, i. e.

$$
d(x, y)= \begin{cases}0 & x=y \\ 42 & x \neq y\end{cases}
$$

Then the set $A:=\{42\}$ is closed and we have $A=K_{\varepsilon}(42)$ with $\varepsilon=\frac{1}{42}$. It follows that A is open. Of course, every subset $B \subset \mathbb{R}$ in the discrete topology is open and closed.
(c) Assume (X, d) to be path connected and let $A \subseteq X$ be open and closed. Define a function $f: X \rightarrow\{0,1\}$ by

$$
f(x)=\left\{\begin{array}{ll}
1 & x \in A \\
0 & x \notin A
\end{array} .\right.
$$

This function is continuous since every preimage of an open set $B \subset\{0,1\}$ (of course with discrete topology, i. e. discrete metric) is open in X. Let $a \in A$ and $b \in X$ be arbitrary. Then by path connectedness there is a continuous path $\gamma[0,1] \rightarrow X$ with $\gamma(0)=a$ and $\gamma(1)=b$. Then of course the function $f \circ \gamma:[0,1] \rightarrow\{0,1\}$ is a continuous path, too. Since this path must be constant, we have $f(\gamma(1))=f(\gamma(0))=1$. So we have $b=\gamma(1) \in A$ and since $b \in X$ was arbitrary we conclude $A=X$. So X is connected.
(d) The set X is the union of the graph of $\varphi:] 0,1] \rightarrow \mathbb{R}, \varphi(x)=\sin (1 / x)$ and the strip of accumulation points $S:=\left\{(0, y)^{T}:-1 \leq y \leq 1\right\}$. This is easy to show by using the continuity of φ on $] 0,1]$ and the fact, every $t \in[-1,1]$ is a limit of the image of a nullsequence under the map φ.
We have $X=\Gamma \cup S$. This is a disjoint union of path connected subsets. Assume $X=A \cup B$ as a disjoint union of both open and closed sets A and B. Then there is a continuous function $g: X \rightarrow\{0,1\}$ with $g(a)=0$ for all $a \in A$ and $g(b)=1$ for all $b \in B$. We have oBdA $S \subseteq A$. Since S is not open, there is a subset $C \subseteq X$ with $A=S \cup C$ and $S \cap C=\emptyset$. But for every $c \in C$ and every $x \in \Gamma$ there is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=c$ and $\gamma(1)=x$. We conclude $A=X$ and $B=\emptyset$, so X is connected.
We have to show that X is not path connected. Choose $x=(1, \sin (1))$ and assume there is for a $s \in S$ a path γ with $\gamma(0)=x$ and $\gamma(1)=s$. Since S is closed there is a smallest number $a \in[0,1]$ with $\gamma(t) \in \Gamma$ for $0 \leq t<a$ and $s:=\gamma(a) \in S$. Let p be the projection map $p: X \rightarrow \mathbb{R}, p(x, y):=x$. This map is continuous. Define for $n>0$ the set $K_{n}:=K_{\frac{1}{n}}(s)$. We have $\Gamma \cap K_{n} \neq \emptyset$ and $p\left(K_{n}\right) \subseteq\left[0, \frac{1}{n}\right]$. Since $\gamma:[0, a] \rightarrow X$ is a continuous path from x to s and the map $p \circ \gamma$ is continuous, we have by the intermediate value theorem $p \circ \gamma([0, a])=[0,1]$: The preimage of K_{n} under γ^{-1} is an open subset of [0,1]. This means there is for every $n>0$ a point $t \in\left[0, a\left[\right.\right.$ with $\gamma(t) \in K_{n}$ and we follow $\Gamma \subseteq \gamma([0, a])$. Now there a different ways to prove that this path can't exist. The first way: $\gamma:[0, a] \rightarrow X$ is uniformly continuously since $[0, a]$ is compact. This means there is a $\delta>0$ with $|s-t| \leq \delta \Rightarrow\|\gamma(s)-\gamma(t)\| \leq \frac{1}{2}$. But for $s_{n}=\frac{2}{n \pi}$ and $t_{n}=\frac{2}{(n+1) \pi}$ one can choose $n>0$ large enough to get a contradiction.
The second way: The image $\gamma([0, a])$ is compact expecially closed in X. But we have $\gamma([0, a]) \cap S=\{s\}$ and $X=\bar{\Gamma} \subseteq \overline{\gamma([0, a])}=\gamma([0, a]) \neq X$ is a contradiction.

Exercise H2 (Curves, path length and rectifiability I)
We first introduce some notation. A partition Z of $[0,1]$ is given by a finite ordered subset $Z=\left\{t_{0}, \ldots, t_{n}\right\}$ with $0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=1$. For simplicity we write $Z=\left\{t_{0}, \ldots, t_{n}\right\}$.
Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a continuously differentiable path and Z a Partition of $[0,1]$. We define piecewise a new path $\gamma_{Z}:[0,1] \rightarrow \mathbb{R}^{n}:$ For $t \in\left[t_{n}, t_{n+1}\right]$ we set

$$
\gamma_{Z}(t):=\frac{t_{n+1}-t}{t_{n+1}-t_{n}} \cdot \gamma\left(t_{n}\right)+\frac{t-t_{n}}{t_{n+1}-t_{n}} \cdot \gamma\left(t_{n+1}\right)
$$

Then γ_{Z} approximates γ by a polygon.
To understand this we consider an example: Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ defined by

$$
\gamma(t):=\binom{\cos (\pi \cdot t)}{\sin (\pi \cdot t)}
$$

Let Z_{n} be the partitions $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$.
(a) Visualise the path γ and the paths $\gamma_{Z_{2}}$ and $\gamma_{Z_{3}}$.
(b) Determine the length $L(\gamma)$ and $L\left(\gamma_{Z_{n}}\right)$ for each $n \in \mathbb{N} \backslash\{0\}$.
(c) Show that $L(\gamma)=\lim _{n \rightarrow \infty} L\left(\gamma_{Z_{n}}\right)$.

Remark: Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ a path which is continuously differentiable except in finitely many points, then the length of γ is defined by

$$
L(\gamma):=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t
$$

Hints for solution:

(b) We calculate:

$$
\begin{aligned}
L(\gamma) & =\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t=\int_{0}^{1} \pi \sqrt{\cos ^{2}(\pi \cdot t)+\sin ^{2}(\pi \cdot t)} d t \\
& =\pi .
\end{aligned}
$$

Let $n>0$ then we have with $\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$ and $x=\frac{k+1}{n} \pi$ and $y=\frac{k}{n} \pi$:

$$
\begin{aligned}
L\left(\gamma_{Z_{n}}\right) & =\int_{0}^{1}\left\|\gamma_{Z_{n}}(t)\right\| d t=\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} n \cdot\left\|\gamma\left(\frac{k+1}{n} \pi\right)-\gamma\left(\frac{k}{n} \pi\right)\right\| d t \\
& =\sum_{k=0}^{n-1}\left\|\binom{\cos \left(\frac{k+1}{n} \pi\right)-\cos \left(\frac{k}{n} \pi\right)}{\sin \left(\frac{k+1}{n} \pi\right)-\sin \left(\frac{k}{n} \pi\right)}\right\| \\
& =\sum_{k=0}^{n-1} \sqrt{2-2\left(\cos \left(\frac{k+1}{n} \pi\right) \cdot \cos \left(\frac{k}{n} \pi\right)+\sin \left(\frac{k+1}{n} \pi\right) \cdot \sin \left(\frac{k}{n} \pi\right)\right)} \\
& =\sum_{k=0}^{n-1} \sqrt{2-2 \cos \left(\frac{\pi}{n}\right)} \\
& =\sqrt{2} \cdot n \cdot \sqrt{1-\cos \left(\frac{\pi}{n}\right)} .
\end{aligned}
$$

(c) After this calculation we have to consider the limit of these numbers. Happy about LHospitals rule we get:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt{2} \cdot n \cdot \sqrt{1-\cos \left(\frac{\pi}{n}\right)} & =\sqrt{2} \cdot \lim _{n \rightarrow \infty} \frac{\sqrt{1-\cos \left(\frac{\pi}{n}\right)}}{\frac{1}{n}} \\
& =\sqrt{2} \cdot \lim _{n \rightarrow \infty} \frac{-\sin \left(\frac{\pi}{n}\right) \cdot \frac{\pi}{n^{2}}}{-2 \cdot \sqrt{1-\cos \left(\frac{\pi}{n}\right)} \cdot \frac{1}{n^{2}}} \\
& =\frac{\pi}{\sqrt{2}} \cdot \sqrt{\lim _{n \rightarrow \infty} \frac{1-\cos ^{2}\left(\frac{\pi}{n}\right)}{1-\cos \left(\frac{\pi}{n}\right)}} \\
& =\frac{\pi}{\sqrt{2}} \cdot \sqrt{\lim _{n \rightarrow \infty} \frac{2 \sin \left(\frac{\pi}{n}\right) \cdot \cos \left(\frac{\pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)}} \\
& =\pi .
\end{aligned}
$$

Exercise H3 (Curves, path length and rectifiability II)
Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a path. We call γ rectifiable, if the following supremum exists:

$$
l(\gamma)=\sup \left\{L\left(\gamma_{Z}\right): Z \text { is a partition of }[0,1]\right\} .
$$

Let Z be a partition of [0,1]. We call a partition Z^{\prime} of [0,1] a refinement of Z, if $Z \subseteq Z^{\prime}$ and write $Z \leq Z^{\prime}$. The mesh $|Z|$ of a partition $Z=\left\{0=t_{0}, t_{1}, \ldots, t_{n}=1\right\}$ is defined by

$$
|Z|:=\max \left\{t_{k+1}-t_{k}: 0 \leq k \leq n-1\right\} .
$$

(a) Show that for each refinement $Z \leq Z^{\prime}$ one has $L\left(\gamma_{Z}\right) \leq L\left(\gamma_{Z^{\prime}}\right)$.
(b) Show that every continuously differentiable path is rectifiable with $l(\gamma)=L(\gamma)$.

Hints for solution:

(a) Assume one has a refinement Z^{\prime} of Z. Then for each pair $\left(s_{i}, s_{i+1}\right)$ consecutive elements of Z one has a finite chain $t_{0}^{i}<\ldots<t_{n}^{i}$ in Z^{\prime} with $t_{0}^{i}=s_{i}$ and $t_{n}^{i}=s_{i+1}$. Witht the triangle inequality one gets

$$
\left\|\gamma\left(s_{i+1}\right)-\gamma\left(s_{i}\right)\right\|=\left\|\sum_{j=0}^{n-1} \gamma\left(t_{j+1}^{i}\right)-\gamma\left(t_{j}^{i}\right)\right\| \leq \sum_{j=0}^{n-1}\left\|\gamma\left(t_{j+1}^{i}\right)-\gamma\left(t_{j}^{i}\right)\right\| .
$$

Summarising over all consecutive pairs $\left(s_{i}, s_{i+1}\right)$ proves the claim.
(b) Let $\varepsilon>0$. We have to show $\left|l(z)-\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t\right| \leq \varepsilon$.

Choose a partition Z_{0} with $\left|l(\gamma)-L\left(\gamma_{Z_{0}}\right)\right| \leq \frac{\varepsilon}{2}$. Of course $t \rightarrow \gamma^{\prime}(t)$ is uniformly continuous and so is $t \rightarrow\left\|\gamma^{\prime}(t)\right\|$. So we can find a $\delta>0$ with $|s-t|<\delta \Rightarrow\left\|\gamma^{\prime}(s)-\gamma^{\prime}(t)\right\|<\frac{\varepsilon}{2 n}$. Let $Z \geq Z_{0}$ with $|Z|<\delta$. By (a) we have $\left|l(\gamma)-L\left(\gamma_{Z}\right)\right| \leq \frac{\varepsilon}{2}$. Let $m \in \mathbb{N}$ the number of elements of Z.
We conclude using the mean value theorems for differentiation and integration:

$$
\begin{aligned}
\left|L\left(\gamma_{Z}\right)-\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t\right| & =\left|\sum_{j=0}^{m-1}\left\|\gamma\left(t_{j+1}\right)-\gamma\left(t_{j}\right)\right\|-\int_{t_{j}}^{t_{j+1}}\left\|\gamma^{\prime}(t)\right\| d t\right| \\
& =\left|\sum_{j=0}^{m-1}\left\|\left(\begin{array}{c}
\gamma_{1}^{\prime}\left(\tau_{1}^{j}\right) \\
\vdots \\
\gamma_{n}^{\prime}\left(\tau_{n}^{j}\right)
\end{array}\right)\right\|\left(t_{j+1}-t_{j}\right)-\left\|\gamma^{\prime}\left(\tau^{j}\right)\right\|\left(t_{j+1}-t_{j}\right)\right|
\end{aligned}
$$

with $\tau^{j}, \tau_{1}^{j}, \ldots, \tau_{n}^{j} \in\left[t_{j}, t_{j+1}\right]$. Since $\left|\gamma_{i}^{\prime}(s)-\gamma_{i}^{\prime}(t)\right| \leq\left\|\gamma^{\prime}(s)-\gamma^{\prime}(t)\right\| \left\lvert\,<\frac{\varepsilon}{2 n}\right.$ we conclude

$$
\begin{aligned}
\left|L\left(\gamma_{Z}\right)-\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t\right| & =\left|\sum_{j=0}^{m-1}\left\|\left(\begin{array}{c}
\gamma_{1}^{\prime}\left(\tau_{1}^{j}\right) \\
\vdots \\
\gamma_{n}^{\prime}\left(\tau_{n}^{j}\right)
\end{array}\right)\right\|\left(t_{j+1}-t_{j}\right)-\left\|\gamma^{\prime}\left(\tau^{j}\right)\right\|\left(t_{j+1}-t_{j}\right)\right| \\
& \left.\leq \sum_{j=0}^{m-1}\| \|\left(\begin{array}{c}
\gamma_{1}^{\prime}\left(\tau_{1}^{j}\right) \\
\vdots \\
\gamma_{n}^{\prime}\left(\tau_{n}^{j}\right)
\end{array}\right)\left\|\left(t_{j+1}-t_{j}\right)-\right\| \gamma^{\prime}\left(\tau^{j}\right) \|\left(t_{j+1}-t_{j}\right) \right\rvert\, \\
& \leq n \cdot \frac{\varepsilon}{2 n}=\frac{\varepsilon}{2}
\end{aligned}
$$

This means

$$
|l(\gamma)-L(\gamma)| \leq\left|l(\gamma)-L\left(\gamma_{Z}\right)\right|+\left|L\left(\gamma_{Z}\right)-L(\gamma)\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

This completes the proof.

