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Groupwork

Exercise G1 (Cauchy-Riemann differential equations I)

Consider the function f(z) := e®. Use the Cauchy-Riemann differential equations to prove that
f is differentiable on the whole complex plane.

Hints for solution: We compute the real vector field for f:
_ (Ref(x+y-i)) _ [Re(e*-e)
Flx,y) = (Imf(x +y-1)) = Lim(ex - &)
e -cos(y)
eX-sin(y) )’
The Jacobian von F is of course:

_ . (cos(y) —sin(y)
Tl =e (sin(y) cos(y) )

The Cauchy-Riemann differential equations are obviously satisfied.




Exercise G2 (Cauchy-Riemann differential equations II)

Consider the function f(x +y i) := x>+ y*>+ x?- y* - i defined on the whole complex plane.
Determine the subset 2 € C on which f has a complex derivative. Is there an inner point
2o € Q7

Hints for solution: We compute the real vector field for f:

_ (Ref(x+y-0)\ _ [x*-y?
FGo,y) = (Imf(x +y-i)) - (xz-yB)

The Jacobian von F is of course:

3x2-y2 2x3.y
JF(xyy)_ (2)(’_)’3 3x2.y2 .

The Cauchy-Riemann differential equations are satisfied, iff x =0 or y = 0. So we have
Q={ze€C: Rez =0 or Imz = 0}.

Of course the interior of Q2 is empty.




Exercise G3 (Path integrals)

Consider the vector field

1 —x*+y*+1
2 = ’
R B(X,J’)—’F(X;J’)-— (x2+y2+1)2( —2xy )ER

Determine fn Fds and fyz Fds for the paths y; : [—1,1] —» R? and y, : [0, ] — R? given by

w0 () = o= (35)

Hints for solution: We write in this hint for solution x - y := (x,y ) for vectors x and y and
we write vectors as row vectors.

Let W :=1vy;y:

W:[-1,1] > R?*  W(t)=(-t,0)
and let Z :=y,:

Z:[0,7] — R?, Z(t) = (cos(t),sin(t)).
We get

! . L
JW Fdt = J_lF(W(t)) W(D)dt = J_l (m,o) (~1,0)dt =

1

__1’

Vo2 . t
= —_—adt = ——— =
L, (2 4+1)2 t2+11-1

f th:f F(Z(t))-Z'(t)dtzf (_Cos(it)“, _Siz(Zt)) . (= sin(t), cos(6))dt =
Z 0 0

B Jn cos(2t)sin(t) — sin(t) — sin(2t) cos(t) =
— 2 =
0

B J“ sin(—2t) cos(t) + cos(—2t) sin(t) — sin(t) e J” sin(—2t + t) — sin(t) 4=
o 4 0 4 -

TT

=-1.

t =
2 2 o

_ fﬁ —sin(t) dr cos(t)
0




Exercise G4 (Elementary properties of the path integral)

Let F, G : R" — R" be continuously differentiable vector fields. Further let y,y; : [a,b] — R"
and v, : [b,c] — R" be continuously differentiable paths. Show that the path integral has the
following properties:

(@) [ AF+pGds=2 [ Fds+p [ Gds.
® [, Fds=[ Fds+[ Fds.
(©) If p : [a,B] — [a,b] is a diffeomorphism with ¢’(t) > 0 then fdes = f}’w Fds.

Interprete part (c) in the special case of a “vector field” F : R 2 [a,b] — R and the path
y:[a,b] =R, y(t)=t.

Hints for solution: Standard Calculations. Part (c) is a multi dimensional version of integration
by substitution.




Exercise G5 (Rotation of a vector field and a two dimensional version of Stoke’s theorem)

Let Q C R? be an open subset and f : R> 2 Q — R? be a continuously differentiable vector
field. Further let v € Q be an arbitrary point and € > 0. Assume that the closed square with
side length € and center v is contained in 2 and let y be the canonical parametrisation of the
boundary of this square, i. e. it is counterclockwisely orientated.

(a) Prove that

1

—zf fds =rot(f)(v),
Y

lim
e—0 ¢
where rot(f)(x,y) := %z(x,y) — %(x,y) defines the rotation of f.

(b) Prove Stoke’s theorem in the two dimensional case:
Let f : R2 2 Q — R? be a continuously differentiable vector field and R := [a, b] x [c,d]
be a rectangle with R C Q. If y is the canonical parametrisation of the boundary of R then
the following equation holds:

d ;b
ffds =J f rot(f)(x,y)dxdy.
Y c Ja

Hint: Use Fubini’s theorem.

Hints for solution:
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Homework

Exercise H1 (Connectedness and path-connectedness) (1 point)

Let (X,d) a metric space. The space X is called connected, if the only subsets of X which are both
open and closed are X and the empty set.
(a) Prove that the following conditions are equivalent:
(i) The space X is connected.
(i) If X = AUB for open sets A and B with ANB =0, thenA=0 or B=0.
(iii) If X = AUB for closed sets A and B with ANB =0, thenA=0 or B =0.
(iv) Every continuous function f : X — {0, 1} is constant.
(b) Is there a metric on R such that (R, d) is disconnected, i. e. not connected? Prove your
claim.

(c) Show that every path connected metric space is connected.

(d) Let
1 T
r:= {(x,sin (;)) :O<x§1} C R?.

Define X := T’ where the closure is taken in the natural metric. Then (X,d) is a metric
space with d(x,y) := ||x — y” ,- Sketch the set X and show that X is connected but not
path connected.

Hints for solution:

(a) (i) = (ii): Let X = AUB with AnB = 0 and A open and B open. Then B = A® is a closed
set. So A is open and closed. By (i) we have A€ {0,X} so B € {0,X}.
(ii) & (iii) Cause A= B¢ and B = A® these conditions are trivially equivalent.
(ii) = (i) Let A C X be open and closed. Then A® is open and closed, too. Further we have
X = AUA® with AnA® = 0. By (ii) we have A € {0, X}, so there is no nontrivial open and
closed subset of X.
(i) = (iv): Assume there is a surjective f : X — {0,1} then A= f ~1({0}) is open and closed
and not empty and B = f "}({1}) is open and closed and not empty since {0, 1} is discrete.
So X is disconnected.
(iv) = (iii): Assume, X = AUB with ANB =0 and A closed and B closed. Define

1 xe€A
f(x):{o x €B.

Since the preimage of closed sets in {0, 1} is closed in X, the function f is continuous and
not constant.

(b) Choose the discrete metric on R, i. e.

0 x=y

d(x,y)= {42 X#y

Then the set A := {42} is closed and we have A = K,(42) with ¢ = 4—12. It follows that A is
open. Of course, every subset B C R in the discrete topology is open and closed.




(o)

(d)

Assume (X,d) to be path connected and let A € X be open and closed. Define a function
f:X—{0,1} by
1 xe€A
x)= .
fl)= { A

This function is continuous since every preimage of an open set B C {0, 1} (of course with
discrete topology, i. e. discrete metric) is open in X. Let a € A and b € X be arbitrary. Then
by path connectedness there is a continuous path y[0,1] — X with y(0) = a and y(1) = b.
Then of course the function f oy : [0,1] — {0, 1} is a continuous path, too. Since this path
must be constant, we have f(y(1)) = f(y(0)) = 1. So we have b = y(1) € A and since
b € X was arbitrary we conclude A= X. So X is connected.

The set X is the union of the graph of ¢ :]0,1] — R, ¢(x) =sin(1/x) and the strip of ac-
cumulation points S := {(0, y)T : =1 < y < 1}. This is easy to show by using the continuity
of ¢ on ]0, 1] and the fact, every t € [—1, 1] is a limit of the image of a nullsequence under
the map ¢.

We have X =T"US. This is a disjoint union of path connected subsets. Assume X =AUB as
a disjoint union of both open and closed sets A and B. Then there is a continuous function
g:X — {0,1} with g(a) =0 for all a € A and g(b) =1 for all b € B. We have oBdA S C A.
Since S is not open, there is a subset C € X with A= SUC and SN C = 0. But for every
¢ € C and every x €T there is a continuous path y : [0,1] — X with y(0) =c and y(1) = x.
We conclude A= X and B =0, so X is connected.

We have to show that X is not path connected. Choose x = (1,sin(1)) and assume there
is for as € S a path y with y(0) = x and y(1) = s. Since S is closed there is a smallest
number a € [0,1] with y(t) € T for 0 < t < a and s := y(a) € S. Let p be the projec-
tion map p: X — R, p(x,y) := x. This map is continuous. Define for n > 0 the set
K, = Kl(S) We have I' N K,, # 0 and p(K,,) < [O, 1] Since y : [0,a] — X is a continuous

path from x to s and the map p oy is continuous, we have by the intermediate value theo-
rem p o y([0,a]) = [0,1]: The preimage of K, under y~! is an open subset of [0,1]. This
means there is for every n > 0 a point t € [0, a[ with y(t) € K,, and we follow I" C y([0, a]).
Now there a different ways to prove that this path can’t exist. The first way: y : [0,a] = X
is uniformly continuously since [0,a] is compact This means there is a &6 > 0 with
s—t| <6 = ||}f(s) — }f(t)” < % But for s, = = and t, = one can choose n > 0 large
enough to get a contradiction.

The second way: The image y([0,a]) is compact expecially closed in X. But we have
7([0,a])NS = {s} and X =T C y([0,a]) = y([0,a]) # X is a contradiction.

C(n +1)




Exercise H2 (Curves, path length and rectifiability I) (1 point)

We first introduce some notation. A partition Z of [0,1] is given by a finite ordered subset
Z={tg,..t )} with0=t,<t; <t,<..<t,=1.Forsimplicity we write Z = {t, ..., t,}.

Let v : [0,1] — R" be a continuously differentiable path and Z a Partition of [0,1]. We define
piecewise a new path y, : [0,1] — R" : For t € [t,, t,,.1] we set

thp1 — t t—t
Yz(t) := tn+—t y(t,) + t—_n Y (Eat1)-

n+l~ tn n+1 n

Then y, approximates y by a polygon.
To understand this we consider an example: Let y : [0,1] — R? defined by

(1) = (cos(rc . t)) .

sin(7 - t)

Let Z,, be the partitions {O, %, %, - 1} .

(a) Visualise the path y and the paths v, and y,.

(b) Determine the length L(y) and L(y,) for each n € N\ {0}.
(c) Show that L(y) = lim,_,. L(yz ).

Remark: Let v : [0,1] — R" a path which is continuously differentiable except in finitely many
points, then the length of y is defined by

1
L(y) :=f |¥'(0)]|dt.
0

Hints for solution:

N

=
o
ok

(a)
(b) We calculate:

1 1
L(y) = f ”}f/(t)||dt=J nx/cosz(n-t)—i-sinz(rc-t)dt
0 0
TT.

10



k

Let n > 0 then we have with cos(x — y) = cos(x)cos(y) + sin(x)sin(y) and x = %n and

(57 ()

dt

1 n-1 p—
L(yz,) = J ||an(f)“df:ZJ n-
0 — LS
cos % cos n)
sin ﬂn sm
k+1 C(k+1 [k
\/ cos - n)-cos(n )+s1n( - n)-sm(gn)).

[

n

MH agh

7T
= O

-2 cos

?T‘
O

= v2-n- 1—cos(£).

n

(c) After this calculation we have to consider the limit of these numbers. Happy about
I’Hospitals rule we get:

N
=
=t
—
|
(@)
o
wn
N
|
N—

lim v2-n- 1—cos(£) =

n—o00 n

= V2-lim . _n
"_’OO—Z-w/l—cos(%)-n—lz

o . 1—cosz(%)

B ﬁ \nh_)ngo 1 — cos (ﬂ)

| §||§
_—
=
=
«
5
e
—
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Exercise H3 (Curves, path length and rectifiability II) (1 point)
Let y: [0,1] — R" be a path. We call y rectifiable, if the following supremum exists:

[(y) =sup{L(y,): Z is a partition of [0, 1]}.

Let Z be a partition of [0,1]. We call a partition Z’ of [0,1] a refinement of Z, if Z C Z’ and
write Z < Z’. The mesh |Z| of a partition Z = {0 = t, t{, ..., t, = 1} is defined by
|Z| ;=max{t;,, —t: 0<k=<n-1}.
(a) Show that for each refinement Z < Z’ one has L(y;) < L(y).
(b) Show that every continuously differentiable path is rectifiable with I(y) = L(y).

Hints for solution:

(a) Assume one has a refinement Z’ of Z. Then for each pair (s;,s;;,) consecutive elements of
Z one has a finite chain t; < ... < t! in Z’ with t{ =s; and t! =s;,;. Witht the triangle
inequality one gets

[ 7Csi41) = (s y(th ) —r(t)

n—1
- <5
j=0
Summarising over all consecutive pairs (s;,s;,;) proves the claim.

(b) Let € > 0. We have to show ’l(z) — fol ||}f’(t) dt| <e.
Choose a partition Z, with [[(y) — L(yz,)| < % Of course t — y/(t) is uniformly continuous
and sois t — ”}f’(t)”. Sowecanfindaé >0with|s—¢t|< 6= Hy’(s) - y’(t)” < ;—n Let
Z = Zy with |Z| < 6. By (a) we have |I(y) — L(yz)| < 5. Let m € N the number of elements

of Z.
We conclude using the mean value theorems for differentiation and integration:

m—1 tj+1
= |2 It = vl - f [vceyae
=0 ‘

J

n—1
> ) — ()
j=0

1
L(Yz)_f |¥/(0)]|dt
0

e || (75D |
= Z : (i = ) = [[r' (]| (41 = 1))
Il ANACS

with Tj,ﬂ, ey T{l € [t;,t;41]. Since |y;(s) — yi(t)] < ||}f’(s) - y’(t)”l < ﬁ we conclude
m—1 [Yll(fll)\ '
= : (i1 —tj) — “Y/(TJ)”(fjH - t)
=0\ r(Tl) )
m—1 (Yll(rjl)\

1
L(yz) - J |¥'(0)]|d¢
0

IA

(tje1 — ) — Y ED||(tje1 — 1)

= I e )
£

IA

=
|
|
|
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This means
€
2

1) = L S M) = LI+ L) = LI < 5 + 5 =

This completes the proof.
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