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Groupwork

Exercise G1 (Cauchy-Riemann differential equations I)

Consider the function f (z) := ez. Use the Cauchy-Riemann differential equations to prove that
f is differentiable on the whole complex plane.

Hints for solution: We compute the real vector field for f :

F(x , y) =
�

Re f (x + y · i)
Im f (x + y · i)

�

=
�

Re(ex · e yi)
Im(ex · e yi)

�

=
�

ex · cos(y)
ex · sin(y)

�

.

The Jacobian von F is of course:

JF(x , y) = ex ·
�

cos(y) − sin(y)
sin(y) cos(y)

�

.

The Cauchy-Riemann differential equations are obviously satisfied.
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Exercise G2 (Cauchy-Riemann differential equations II)

Consider the function f (x + y · i) := x3 · y2 + x2 · y3 · i defined on the whole complex plane.
Determine the subset Ω ⊆ C on which f has a complex derivative. Is there an inner point
z0 ∈ Ω?

Hints for solution: We compute the real vector field for f :

F(x , y) =
�

Re f (x + y · i)
Im f (x + y · i)

�

=
�

x3 · y2

x2 · y3

�

The Jacobian von F is of course:

JF(x , y) =
�

3x2 · y2 2x3 · y
2x · y3 3x2 · y2

�

.

The Cauchy-Riemann differential equations are satisfied, iff x = 0 or y = 0. So we have

Ω = {z ∈ C : Rez = 0 or Imz = 0}.

Of course the interior of Ω is empty.
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Exercise G3 (Path integrals)

Consider the vector field

R2 3 (x , y)→ F(x , y) :=
1

(x2+ y2+ 1)2

�

−x2+ y2+ 1
−2x y

�

∈ R2.

Determine
∫

γ1
Fds and

∫

γ2
Fds for the paths γ1 : [−1,1]→ R2 and γ2 : [0,π]→ R2 given by

γ1(t) :=
�

−t
0

�

and γ2(t) :=
�

cos(t)
sin(t)

�

.

Hints for solution: We write in this hint for solution x · y :=



x , y
�

for vectors x and y and
we write vectors as row vectors.
Let W := γ1:

W : [−1, 1]→ R2, W (t) = (−t, 0)

and let Z := γ2:

Z : [0,π]→ R2, Z(t) = (cos(t), sin(t)).

We get
∫

W

Fd t =

∫ 1

−1

F(W (t)) · Ẇ (t)d t =

∫ 1

−1

� −t2+ 1

(t2+ 1)2
, 0
�

· (−1,0)d t =

=

∫ 1

−1

t2− 1

(t2+ 1)2
d t =−

t

t2+ 1

�

�

�

1

−1
=−1,

∫

Z

Fd t =

∫ π

0

F(Z(t)) · Ż(t)d t =

∫ π

0

�− cos(2t) + 1

4
,
− sin(2t)

4

�

·
�

− sin(t), cos(t)
�

d t =

=

∫ π

0

cos(2t) sin(t)− sin(t)− sin(2t) cos(t)
4

d t =

=

∫ π

0

sin(−2t) cos(t) + cos(−2t) sin(t)− sin(t)
4

d t =

∫ π

0

sin(−2t + t)− sin(t)
4

d t =

=

∫ π

0

− sin(t)
2

d t =
cos(t)

2

�

�

�

π

0
=−1.

3



Exercise G4 (Elementary properties of the path integral)

Let F, G : Rn → Rn be continuously differentiable vector fields. Further let γ,γ1 : [a, b]→ Rn

and γ2 : [b, c]→ Rn be continuously differentiable paths. Show that the path integral has the
following properties:

(a)
∫

γ
λF +µGds = λ

∫

γ
Fds+µ

∫

γ
Gds.

(b)
∫

γ1+γ2
Fds =

∫

γ1
Fds+

∫

γ2
Fds.

(c) If ϕ : [α,β]→ [a, b] is a diffeomorphism with ϕ′(t)> 0 then
∫

γ
Fds =

∫

γ◦ϕ Fds.

Interprete part (c) in the special case of a “vector field” F : R ⊇ [a, b] → R and the path
γ : [a, b]→ R, γ(t) = t.

Hints for solution: Standard Calculations. Part (c) is a multi dimensional version of integration
by substitution.
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Exercise G5 (Rotation of a vector field and a two dimensional version of Stoke’s theorem)

Let Ω ⊆ R2 be an open subset and f : R2 ⊇ Ω → R2 be a continuously differentiable vector
field. Further let v ∈ Ω be an arbitrary point and ε > 0. Assume that the closed square with
side length ε and center v is contained in Ω and let γ be the canonical parametrisation of the
boundary of this square, i. e. it is counterclockwisely orientated.

(a) Prove that

lim
ε→0

1

ε2

∫

γ

f ds = rot( f )(v ),

where rot( f )(x , y) := ∂ f2
∂ x
(x , y)− ∂ f1

∂ y
(x , y) defines the rotation of f .

(b) Prove Stoke’s theorem in the two dimensional case:
Let f : R2 ⊇ Ω→ R2 be a continuously differentiable vector field and R := [a, b]× [c, d]
be a rectangle with R ⊆ Ω. If γ is the canonical parametrisation of the boundary of R then
the following equation holds:

∫

γ

f ds =

∫ d

c

∫ b

a

rot( f )(x , y)d xd y.

Hint: Use Fubini’s theorem.

Hints for solution:
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This is purely analysis:

6



7



Homework

Exercise H1 (Connectedness and path-connectedness) (1 point)

Let (X,d) a metric space. The space X is called connected, if the only subsets of X which are both
open and closed are X and the empty set.

(a) Prove that the following conditions are equivalent:
(i) The space X is connected.

(ii) If X = A∪ B for open sets A and B with A∩ B = ;, then A= ; or B = ;.
(iii) If X = A∪ B for closed sets A and B with A∩ B = ;, then A= ; or B = ;.
(iv) Every continuous function f : X → {0, 1} is constant.

(b) Is there a metric on R such that (R, d) is disconnected, i. e. not connected? Prove your
claim.

(c) Show that every path connected metric space is connected.

(d) Let

Γ :=

¨

�

x , sin
�

1

x

��T

: 0< x ≤ 1

«

⊆ R2.

Define X := Γ where the closure is taken in the natural metric. Then (X , d) is a metric
space with d(x , y) :=



x − y




2. Sketch the set X and show that X is connected but not
path connected.

Hints for solution:

(a) (i) ⇒ (ii): Let X = A∪ B with A∩ B = ; and A open and B open. Then B = AC is a closed
set. So A is open and closed. By (i) we have A∈ {;, X } so B ∈ {;, X }.
(ii)⇔ (iii) Cause A= BC and B = AC these conditions are trivially equivalent.
(ii)⇒ (i) Let A⊆ X be open and closed. Then AC is open and closed, too. Further we have
X = A∪ AC with A∩ AC = ;. By (ii) we have A ∈ {;, X }, so there is no nontrivial open and
closed subset of X .
(i)⇒ (iv): Assume there is a surjective f : X → {0,1} then A= f −1({0}) is open and closed
and not empty and B = f −1({1}) is open and closed and not empty since {0, 1} is discrete.
So X is disconnected.
(iv)⇒ (iii): Assume, X = A∪ B with A∩ B = ; and A closed and B closed. Define

f (x) =

(

1 x ∈ A
0 x ∈ B.

Since the preimage of closed sets in {0, 1} is closed in X , the function f is continuous and
not constant.

(b) Choose the discrete metric on R, i. e.

d(x , y) =

(

0 x = y
42 x 6= y

.

Then the set A := {42} is closed and we have A = Kε(42) with ε = 1
42

. It follows that A is
open. Of course, every subset B ⊂ R in the discrete topology is open and closed.
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(c) Assume (X , d) to be path connected and let A ⊆ X be open and closed. Define a function
f : X → {0, 1} by

f (x) =

(

1 x ∈ A
0 x /∈ A

.

This function is continuous since every preimage of an open set B ⊂ {0,1} (of course with
discrete topology, i. e. discrete metric) is open in X . Let a ∈ A and b ∈ X be arbitrary. Then
by path connectedness there is a continuous path γ[0,1]→ X with γ(0) = a and γ(1) = b.
Then of course the function f ◦ γ : [0,1]→ {0,1} is a continuous path, too. Since this path
must be constant, we have f (γ(1)) = f (γ(0)) = 1. So we have b = γ(1) ∈ A and since
b ∈ X was arbitrary we conclude A= X . So X is connected.

(d) The set X is the union of the graph of ϕ :]0, 1]→ R, ϕ(x) = sin(1/x) and the strip of ac-
cumulation points S := {(0, y)T :−1≤ y ≤ 1}. This is easy to show by using the continuity
of ϕ on ]0, 1] and the fact, every t ∈ [−1, 1] is a limit of the image of a nullsequence under
the map ϕ.
We have X = Γ∪S. This is a disjoint union of path connected subsets. Assume X = A∪B as
a disjoint union of both open and closed sets A and B. Then there is a continuous function
g : X → {0,1} with g(a) = 0 for all a ∈ A and g(b) = 1 for all b ∈ B. We have oBdA S ⊆ A.
Since S is not open, there is a subset C ⊆ X with A = S ∪ C and S ∩ C = ;. But for every
c ∈ C and every x ∈ Γ there is a continuous path γ : [0,1]→ X with γ(0) = c and γ(1) = x .
We conclude A= X and B = ;, so X is connected.
We have to show that X is not path connected. Choose x = (1, sin(1)) and assume there
is for a s ∈ S a path γ with γ(0) = x and γ(1) = s. Since S is closed there is a smallest
number a ∈ [0, 1] with γ(t) ∈ Γ for 0 ≤ t < a and s := γ(a) ∈ S. Let p be the projec-
tion map p : X → R, p(x , y) := x . This map is continuous. Define for n > 0 the set
Kn := K 1

n
(s). We have Γ∩ Kn 6= ; and p(Kn) ⊆ [0, 1

n
]. Since γ : [0, a]→ X is a continuous

path from x to s and the map p ◦ γ is continuous, we have by the intermediate value theo-
rem p ◦ γ([0, a]) = [0, 1]: The preimage of Kn under γ−1 is an open subset of [0,1]. This
means there is for every n> 0 a point t ∈ [0, a[ with γ(t) ∈ Kn and we follow Γ⊆ γ([0, a]).
Now there a different ways to prove that this path can’t exist. The first way: γ : [0, a]→ X
is uniformly continuously since [0, a] is compact. This means there is a δ > 0 with
|s− t| ≤ δ⇒



γ(s)− γ(t)


≤ 1
2
. But for sn =

2
nπ

and tn =
2

(n+1)π
one can choose n> 0 large

enough to get a contradiction.
The second way: The image γ([0, a]) is compact expecially closed in X . But we have
γ([0, a])∩ S = {s} and X = Γ⊆ γ([0, a]) = γ([0, a]) 6= X is a contradiction.

9



Exercise H2 (Curves, path length and rectifiability I) (1 point)

We first introduce some notation. A partition Z of [0, 1] is given by a finite ordered subset
Z = {t0, ..., tn} with 0= t0 < t1 < t2 < ...< tn = 1. For simplicity we write Z = {t0, ..., tn}.
Let γ : [0, 1]→ Rn be a continuously differentiable path and Z a Partition of [0,1]. We define
piecewise a new path γZ : [0, 1]→ Rn : For t ∈ [tn, tn+1] we set

γZ(t) :=
tn+1− t

tn+1− tn
· γ(tn) +

t − tn

tn+1− tn
· γ(tn+1).

Then γZ approximates γ by a polygon.
To understand this we consider an example: Let γ : [0, 1]→ R2 defined by

γ(t) :=
�

cos(π · t)
sin(π · t)

�

.

Let Zn be the partitions
¦

0, 1
n
, 2

n
, ..., 1

©

.

(a) Visualise the path γ and the paths γZ2
and γZ3

.

(b) Determine the length L(γ) and L(γZn
) for each n ∈ N \ {0}.

(c) Show that L(γ) = limn→∞ L(γZn
).

Remark: Let γ : [0, 1]→ Rn a path which is continuously differentiable except in finitely many
points, then the length of γ is defined by

L(γ) :=

∫ 1

0



γ′(t)


d t.

Hints for solution:

(a)

(b) We calculate:

L(γ) =

∫ 1

0



γ′(t)


d t =

∫ 1

0

π
p

cos2(π · t) + sin2(π · t)d t

= π.

10



Let n > 0 then we have with cos(x − y) = cos(x) cos(y) + sin(x) sin(y) and x = k+1
n
π and

y = k
n
π:

L(γZn
) =

∫ 1

0



γZn
(t)


d t =
n−1
∑

k=0

∫
k+1

n

k
n

n ·








γ

�

k+ 1

n
π

�

− γ
�

k

n
π

�








d t

=
n−1
∑

k=0











�

cos
�

k+1
n
π
�

− cos
�

k
n
π
�

sin
�

k+1
n
π
�

− sin
�

k
n
π
�

�











=
n−1
∑

k=0

r

2− 2
�

cos
�

k+ 1

n
π

�

· cos
�

k

n
π

�

+ sin
�

k+ 1

n
π

�

· sin
�

k

n
π

��

.

=
n−1
∑

k=0

Ç

2− 2cos
�π

n

�

=
p

2 · n ·
Ç

1− cos
�π

n

�

.

(c) After this calculation we have to consider the limit of these numbers. Happy about
L’Hospitals rule we get:

lim
n→∞

p
2 · n ·

Ç

1− cos
�π

n

�

=
p

2 · lim
n→∞

Æ

1− cos
�

π

n

�

1
n

=
p

2 · lim
n→∞

− sin
�

π

n

�

· π
n2

−2 ·
Æ

1− cos
�

π

n

�

· 1
n2

=
π
p

2
·

√

√

√

√ lim
n→∞

1− cos2
�

π

n

�

1− cos
�

π

n

�

=
π
p

2
·

√

√

√

√ lim
n→∞

2sin
�

π

n

�

· cos
�

π

n

�

sin
�

π

n

�

= π.
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Exercise H3 (Curves, path length and rectifiability II) (1 point)

Let γ : [0,1]→ Rn be a path. We call γ rectifiable, if the following supremum exists:

l(γ) = sup{L(γZ) : Z is a partition of [0, 1]}.

Let Z be a partition of [0, 1]. We call a partition Z ′ of [0,1] a refinement of Z , if Z ⊆ Z ′ and
write Z ≤ Z ′. The mesh |Z | of a partition Z = {0= t0, t1, ..., tn = 1} is defined by

|Z | :=max{tk+1− tk : 0≤ k ≤ n− 1}.

(a) Show that for each refinement Z ≤ Z ′ one has L(γZ)≤ L(γZ ′).
(b) Show that every continuously differentiable path is rectifiable with l(γ) = L(γ).

Hints for solution:

(a) Assume one has a refinement Z ′ of Z . Then for each pair (si, si+1) consecutive elements of
Z one has a finite chain t i

0 < ... < t i
n in Z ′ with t i

0 = si and t i
n = si+1. Witht the triangle

inequality one gets



γ(si+1)− γ(si)


=











n−1
∑

j=0

γ(t i
j+1)− γ(t

i
j)











≤
n−1
∑

j=0





γ(t i
j+1)− γ(t

i
j)




.

Summarising over all consecutive pairs (si, si+1) proves the claim.

(b) Let ε > 0. We have to show
�

�

�l(z)−
∫ 1

0



γ′(t)


d t
�

�

�≤ ε.
Choose a partition Z0 with |l(γ)− L(γZ0

)| ≤ ε

2
. Of course t → γ′(t) is uniformly continuous

and so is t →


γ′(t)


. So we can find a δ > 0 with |s− t| < δ⇒


γ′(s)− γ′(t)


 < ε

2n
. Let

Z ≥ Z0 with |Z |< δ. By (a) we have |l(γ)− L(γZ)| ≤
ε

2
. Let m ∈ N the number of elements

of Z .
We conclude using the mean value theorems for differentiation and integration:

�

�

�

�

�

L(γZ)−
∫ 1

0



γ′(t)


d t

�

�

�

�

�

=

�

�

�

�

�

m−1
∑

j=0



γ(t j+1)− γ(t j)


−
∫ t j+1

t j



γ′(t)


d t

�

�

�

�

�

.

=

�

�

�

�

�

�

�

m−1
∑

j=0























γ′1(τ
j
1)

...
γ′n(τ

j
n)























(t j+1− t j)−


γ′(τ j)


(t j+1− t j)

�

�

�

�

�

�

�

with τ j,τ j
1, ...,τ j

n ∈ [t j, t j+1]. Since |γ′i(s)− γ
′
i(t)| ≤



γ′(s)− γ′(t)


|< ε

2n
we conclude

�

�

�

�

�

L(γZ)−
∫ 1

0



γ′(t)


d t

�

�

�

�

�

=

�

�

�

�

�

�

�

m−1
∑

j=0























γ′1(τ
j
1)

...
γ′n(τ

j
n)























(t j+1− t j)−


γ′(τ j)


(t j+1− t j)

�

�

�

�

�

�

�

≤
m−1
∑

j=0

�

�

�

�

�

�

�























γ′1(τ
j
1)

...
γ′n(τ

j
n)























(t j+1− t j)−


γ′(τ j)


(t j+1− t j)

�

�

�

�

�

�

�

≤ n ·
ε

2n
=
ε

2
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This means

|l(γ)− L(γ)| ≤ |l(γ)− L(γZ)|+ |L(γZ)− L(γ)| ≤
ε

2
+
ε

2
= ε.

This completes the proof.
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