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Groupwork

Exercise G1 (Power series of real functions)

We consider the following functions which are defined on the whole real axis:

f1(x) :=

(

e−
1

x2 x 6= 0

0 x = 0,
f2(x) :=

x2

1+ x2 , f3(x) := 1− e−
x2
2 .

Sketch the graphs of these functions and expand them in x0 = 0 into a Taylor series. Determine
for each Taylor series the greatest open subset U ⊂ R such that the series represents the function.

Hints for solution: The graphs of these functions look like very simmilar:

.
The Taylor series of these functions behave in opposite completely different:

T1(x) = 0, T2(x) =
∞
∑

n=0

(−1)n · x2n+2, T3(x) =
∞
∑

k=1

(−1)k+1

2k · k!
· x2k.

The maximal open subset for T1 is ;, because only in x0 = 0 it represents f1. The maximal open
subset for T2 is ]− 1, 1[ and for T3 is R.
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Exercise G2 (Complex functions and real vector fields)

We already know that C is isomorphic to R2 as a real vector space with the canonical R-Basis

{1, i}. In this way we identify the complex numer z = a + bi with the vector
�

a
b

�

. For this

exercise we call this identification the canonical identification of C with R2.
Now we consider the complex polynomial f : C→ C with f (z) := z2+ 1.

(a) Show that f is complex differentiable in the following sense: For each complex number
z ∈ C the limit

f ′(z) := lim
ω→0

f (z+ω)− f (z)
ω

exists. Calculate f ′(z) explicitely.
(b) We define the real vector field

F(x , y) :=
�

Re( f (x + y · i)
Im( f (x + y · i)

�

.

Show that this vector field F : R2 → R2 is everywhere differentiable and calculate the
Jacobian.

(c) Is there some remarkable relation of the Jacobian JF(x , y) and the value of f ′(x + yi)?
Hint: Any complex linear funcion T : C→ C is of course a real linear function.

Hints for solution:

(a) Exactly as in the real case one gets:

f ′(z) = lim
ω→0

f (z+ω)− f (z)
ω

= lim
ω→0

z2+ 2zω+ω2+ 1− z2− 1

ω

= lim
ω→0

(2z+ω)ω
ω

= lim
ω→0

2z+ω= 2z.

So the function f is complex differentiable with derivative f ′(z) = 2z.
(b) We calculate

F(x , y) =
�

Re( f (x + y · i)
Im( f (x + y · i)

�

=
�

Re(x2− y2+ 1+ 2x yi)
Im(x2− y2+ 1+ 2x yi)

�

=
�

x2− y2+ 1
2x y

�

.

So we get

JF(x , y) =
�

2x −2y
2y 2x

�

.

(c) The mapω→ 2z·ω is aC-linear mapC→ C. Of course it isR-linear too, so it is represented
by a 2× 2 matrix under canonical representation of C with R2. Let z = x + yi, ω = a+ bi
and Tz(x , y) the R-linear interpretation of M2z(ω) := 2z ·ω. We get

Tz(x , y) = 2 ·
�

Re((x + yi)(a+ bi))
Im((x + yi)(a+ bi))

�

= 2 ·
�

Re(ax − b y + (a y + bx)i)
Im(ax − b y + (a y + bx)i)

�

= 2 ·
�

ax − b y
a y + bx

�

=
�

2x −2y
2y 2x

�

·
�

a
b

�

.

So JF(x , y) : R2→ R2 is the real linear vector field corresponding to ω→ f ′(x + yi) ·ω.
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Exercise G3 (Fields, matrices and complex numbers)

Let K be a field and let λ ∈ K be a number which has no square root in K, i. e. there is no
element µ ∈K with µ2 = λ.
Let M2(K) be the set of all 2× 2 matrices with entries in K. In this exercise we consider the
subset

L :=
��

a λ · b
b a

�

, a, b ∈K
�

⊆ M2(K).

(a) Show that L is a field with the usual matrix addition and matrix multiplication. Assure
yourself that

K 3 x →
�

x 0
0 x

�

=: x · 1l ∈ L

defines an injective field homomorphism.
Hint: You may use your knowledge of matrices over fields to avoid proving every axiom for
a field.

(b) in which way is l :=
�

0 λ
1 0

�

special?

(c) What can you say about the eigenvalues of a · 1l+ b · l?
(d) Find a subset of M2(R) which is isomorphic to C.
(e) Is there a field with 9 elements?

Hints for solution:

(a) It’s a very easy calculation to prove that L is closed under addition and multiplication.
Further it’s very easy to show that the multiplication on L is commutative. So it’s only
necessary to prove every element in L \ {0} is invertible and the inverse is again in L.
Invertibility follows directly, because the determinant of such an element is a2−λb2 – it’s a
number in K which can’t be zero by assumption on λ. The inverse is an element of L again
which can be seen easily by calculation or formulas from linear algebra.
The map K 3 x → x · 1l is obviously K-linear, multiplicative and injective. Further 1l is
the neutral element in M2(K), so the image of 1 ∈ K is 1l ∈ L. So it’s an injective field
homomorphism.

(b) In L the following equation holds:

l2 =
�

0 λ
1 0

�

·
�

0 λ
1 0

�

=
�

λ 0
0 λ

�

.

So the equation X 2−λ= 0 has at least one solution l in L. In fact −l is a solution, too.
(c) If b 6= 0 holds this element has no eigenvalues since the polynomial p(X ) = (a− X )2−λb2

has no roots in K. If b = 0, one easily sees the eigenvalue: a. Of course, the eigenspace is
2-dimensional in this case.

(d) Choose λ=−1 and write down L.
(e) In Z3 which is a field there is no root for 2. So we can choose λ = 2 and write down
L. Sadly: In a finite field of characteristic 2 the construction above in this exercise is not
applicable (why?).
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Exercise G4 (Visualisation of complex functions)

Consider the complex polynomial f : C→ C with f (z) = z2 and the following subset M of C:

M := {z ∈ C : 0≤ Re(z)≤ 1, 0≤ Im(z)≤ 1}.

(a) Is M open, closed, bounded, compact, convex?

(b) Calculate the image f (M) and visualize the action of f by laying a grid into M , paramter-
izing grid lines by paths and calculating the image under f of these paths. Draw them into
a draft and look on the angles of intersecting image paths. Looks something particular?

(c) What is the image of the half disk {z ∈ C : Im(z)≥ 0 and |z|< 1}?

Hints for solution:

(a) Of course M is not open. The answer of the other questions is yes.

(b) Look:

.

Except in z = 0, all images of rectangular angles look like infinitesimally staying rectangu-
lar.

(c) The image is the hole unit disk D := {z ∈ C | |z|< 1}.
Remark: The images in this hints for solution are drawn by GeoGebra and converted by GIMP.
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Homework

Exercise H1 (Curves and path length) (1 point)

Let γ : [a, b] → Rn be a regular path which parameterises a curve Γ ⊆ Rn. The arc length
s : [a, b]→ R of γ is defined as follows:

s(t) :=

∫ t

a





γ′(x)




d x .

(a) Calculate s(t) for the path γ : [1, 2]→ R3 with γ(t) :=







2 · t
t2

ln(t)






.

(b) Why do we assume the path beeing regular instead of continuously differentiable?

(c) Show that s : [a, b]→ [0, l(γ)] is a diffeomorphism for a regular path. Use this for writing
down a parameterisation φ : [0, l(γ)]→ Γ (The parameterisation by the arc length).

(d) Consider the curve Γ := {(x , y) ∈ R2 : y3 − x2 = 0} ∩ [−1, 1] × [−1,1]. Is it possible
to parameterise this curve continuously differentiable? Is it possible to parameterise this
curve regularly? Prove your claim.

Hints for solution:

(a)

s(t) =

∫ t

1





γ′(u)




du=

∫ t

1

r

4+ 4u2+
1

u2 du

=

∫ t

1

2u+
1

u
du= t2+ ln(t)− 1.

(b) If we don’t assume γ to be regular we can’t exclude that the path stops and move backward
(The integrant is nonnegative!) which causes nonintuitive arc lengths in our oppinion.

(c) The function s is continuous and strict monotonically growing. So f is injective. By the
intermediate value theorem it is surjective, too. The derivative of s is





γ′(t)




 > 0. So the
inverse map s−1 : [0, l(γ)] → [a, b] is differentiable, too. Since the inverse mapping is
continuously differentiable, s is a diffeomorphism.
Define φ(t) := γ(s−1(t)) and one get’s the demanded parametrisation.

(d) Yes: γ(t) :=
�

t3

t2

�

is a continuously differentiable parametrisation of Γ.

There can’t be a regular representation: Assume we have a continuously differentiable pa-
rameterisation γ : [0,1] of Γ. We use γ1 and γ2 for the components of the path γ. Because
(−1,1) ∈ Γ and (1, 1) ∈ Γ there is by the mean value theorem for differentiable real func-
tions a point t0 ∈]0,1[ with γ′2(t0) = 0.
Further the component functions are related by γ1(t)2 = γ2(t)3, so we get after differenti-
ation

2γ1(t) · γ′1(t) = 3γ2(t)
2 · γ′2(t).
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From this equations we get γ1(t0) = γ2(t0) = 0 or γ′1(t0) = 0. In the second case, γ is not a
regular parametrisation. So we have to discuss the first case.
Assume that γ′1(t0) 6= 0. So this is true in some open neighbourhood of t0 ∈]0, 1[ since γ′1
is continuous. In this neighbourhood γ1(t) is not zero for t 6= t0, too – elsewhere by the
mean value theorem we would have a zero of γ′1 in the neighbourhood, a contradicion. We
name this neighbourhood by U and using γ1(t) 6= 0 for t ∈ U \ {t0}. We get on U \ {t0} :

γ′1(t) =
3

2
·
γ2(t)2 · γ′2(t)

γ1(t)
.

Using |γ1(t)2|= |γ2(t)3| we get on U \ {t0} :

|γ′1(t)|=
3

2
·
�

�γ2(t)
�

�

1
2 · |γ′2(t)|.

Taking limt→t0
on both sides we get γ′1(t0) = 0 a contradiction. So there can’t exist a regular

representation of Γ.
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Exercise H2 (A very important vector field) (1 point)

Consider the function f : C \ {0} → C \ {0} defined by f (z) := 1
z
.

(a) Calculate the real vector field F : R2 \ {0} → R2 \ {0} which describes after canconical
representation of R2 and C the function f .

(b) Determine all points (x , y) ∈ R2\{0} in which F is differentiable. For which points (x , y) ∈
R2 \ {0} is the Jacobian JF(x , y) the action of a complex linear map?

Hints for solution:

(a) An easy calculation shows

F(x , y) =

 

x
x2+y2
−y

x2+y2

!

.

(b) The Jacobian of F in (x , y)T is given by

JF(x , y) =
1

(x2+ y2)2

�

−x2+ y2 −2x y
2x y −x2+ y2

�

.

For every (x , y)T ∈ R2 \ {0} the Jacobian JF(x , y) corresponds to the action of the map
Mω : C→ C, Mωz =ω · z for ω=− 1

(x+yi)2
. This shouldn’t be a hard surprise.
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Exercise H3 (Path connectedness) (1 point)

Let (X , d) be a metric space. We call a metric space path connected if for any two poins x , y ∈ X
there is a continuous path γ : [0, 1] → X with γ(0) = x and γ(1) = y . Show the following
statements:

(a) Let (X , d) and (Y, d̃) be metric spaces and f : X → Y a surjective continuous map. Then Y
is path connected if X is path connected.

(b) The set of all orthorgonal 2×2 matrices over R called O2(R) is not path connected. For this
you can choose any norm on M2(R) to get a metric on O2(R): The result is independend of
the chosen norm.
Hint: You can use that the coordinate evaluation maps A→ Ai, j are continuous. By (a) it
must be possible to find a path disconnected metric space (Y, d) and a surjective continuous
map f : O2(R)→ Y .

(c) Let (X , d) and (Y, d̃) be metric spaces and let ϕ : X → Y be a homeomorphism. Then X is
path connected iff Y is path connected.
Remark: ’Iff’ means if and only if. It’s a common and often used abbreviation in mathe-
matical literature.

(d) There is no homeomorphism f : R→ C if R and C carry the natural metric induced by the
absolute value | · |.

(e) There is no isomorphism of fields ϕ : R→ C.

(f**) There is a bijection Φ : R→ C.

Remark: In the last steps we see an interesting fact: The real numbers and the complex numbers
are different fields, different metric spaces but as sets they are equal in some sense.

Hints for solution:

(a) Let x , y ∈ Y be arbitrary. We find preimages a, b ∈ X with f (a) = x and f (b) = y. Since
X is path connected there is a continuous path γ which starts in a and ends in b. Build
γ̃(t) := f (γ(t)) and you get a path in Y starting in x and ending in y . So Y is path
connected.

(b) There are various characterisations for a matrix beeing orthogonal: Algebraically this
means A ∈ O2(R) iff AT · A = 1l and geometrically this means the rows of A builds an
orthogonal basis of R2 and the columns as well. If we looks at the matrix entries we see the
images of the maps A→ Ai, j = A→

¬

A · ei, e j

¶

are the real intervall [−1,1] which is path
connected and brings no obvious counterexample.
If one look at the orientation of the orthonogal basis consisting of the columns or rows of
A which are the images on the standard orthonormal basis there are two different cases:
Either the orientation is preserved or not (compared with the orientation of the stadard
orhonormal basis). If one varies A continuously the column vectors varies continuously
and so the orientation stays preserved or reflected. This can be proved elegantly using the
determinant: The determinant of A is positive iff the orientation is preserved and negative
in the other case. Further the determinant is a continuous function on M2(R) (Leibnitz
formula for the determinant!) and the image of the orthogonal matrices is {−1, 1} ⊆ R. So
there cannot exist a continuous path from

A :=
�

−1 0
0 1

�

to 1l=
�

1 0
0 1

�

,
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cause the determinant of A is −1 and the determinant of 1l is 1. So the space O2(R) can’t
be path connected.

(c) Use (a) for ϕ and its by definition continuous inverse map ϕ−1.

(d) Assume there is a homeomorphism f : R→ C. Then there is a point x ∈ R with f (x) = 0.
OBdA x = 0. If we restrict f to R \ {0} then we get a homeomorphism g : R \ {0} →
C \ {0}. Since C \ {0} is path connected and since R \ {0} is not path connected the inverse
map g−1 cant be surjective and continuous, a contradiction. So there can’t exist such an
homeomorphism f .

(e) Assume we have a field isomorphism ϕ : R → C. Then because R is an ordered field
there is an ordering on C. Because −1 < 0 and x2 ≥ 0 in every ordered field one gets
0≤ i2 =−1< 0 a contradiction. So there can’t exist such an isomorphism.
Another proof without using ordering: Assume there is a field isomorphism ϕ. Because
the equation X 2 + 1 = 0 has a solution in C it has a solution in ϕ−1(C) because 0 =
ϕ−1(λ2+1) =

�

ϕ−1(λ)
�2
+1. But in R there is no number x with x2 =−1 a contradiction.

So there can’t exist such an isomorphism.

(f**) It’s not easy to give an explicite bijective map. One can use set theoretic theorems like
the Cantor-Bernstein-Schröder theorem and only has to find an injective map f : R → C
and an injective map h : C → R. The first injection is easy to find. Instead of finding an
injective map h : C→ R it is enough to find a surjective map g : R→ C. This can be done
as follows: Every real numer in ]0,1] has a unique representation x =

∑∞
k=1 xk ·2−k where

the sequence (xn)n∈N is not finally zero. Define

φ(x) :=

 

∞
∑

k=1

x2k · 2−k,
∞
∑

k=1

x2k−1 · 2−k

!

.

This is a surjective map φ :]0, 1]→ [0,1]×[0, 1]\{(0,0)}. So there is of course a surjective
map [0,1]→ [0, 1]× [0,1]. Now we can use a surjective map Φ : [0, 1]× [0,1]→ C to get
a surjective map g : R→ C.
Of course this is very unconstructive.
The Cantor-Bernstein-Schröder theorem states: If one has an injection f : X → Y and an
injection g : Y → X then there is a bijection Φ : X → Y .
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