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Exercise G1 (Power series of real functions)
We consider the following functions which are defined on the whole real axis
fa(x):=1—¢e" 2.

Sketch the graphs of these functions and expand them in x, = 0 into a Taylor series. Determine
for each Taylor series the greatest open subset U C R such that the series represents the function.

Hints for solution: The graphs of these functions look like very simmilar
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The Taylor series of these functions behave in opposite completely different
00 ( 1)k+1
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T,()=0, T,(x)=> (-1)"-x*?  Ty(x)= Z TR

The maximal open subset for T is @, because only in x, = 0 it represents f;. The maximal open

subset for T, is ] — 1,1[ and for T5 is R.




Exercise G2 (Complex functions and real vector fields)

We already know that C is isomorphic to R? as a real vector space with the canonical R-Basis
{1,1}. In this way we identify the complex numer z = a + bi with the vector (Z) . For this
exercise we call this identification the canonical identification of C with R2.

Now we consider the complex polynomial f : C — C with f(z) := 2%+ 1.

(a) Show that f is complex differentiable in the following sense: For each complex number
z € C the limit

flz+w)—-f(2)

w

f'(2):= lir%
exists. Calculate f’(z) explicitely.
(b) We define the real vector field
Re(f(x+y- i))

Fx,y):= (Im(f(x +y-)
Show that this vector field F : R? — R? is everywhere differentiable and calculate the
Jacobian.
(c) Is there some remarkable relation of the Jacobian J(x, y) and the value of f'(x + yi)?
Hint: Any complex linear funcion T : C — C is of course a real linear function.
Hints for solution:
(a) Exactly as in the real case one gets:
,  fzt+w)—f(2) 2?4+ 2w+ wr+1-22-1
f'(z) = lim = lim
w—0 w w—0 w
o (224 ww
lim ————

= lim 22 + w = 23.
w—0 w w—0

So the function f is complex differentiable with derivative f'(z) = 2z.
(b) We calculate

_ (Re(x*—y*+1+2xyi)

Re(f(x+y-i)
~ \Im(x? — y?+1+2xyi)

Fhoy) = (Im(f(X+y-i)
_ (x*=yr+1
o ( 2xy )

2x -2
JF(X,)’) = (2_)/ zxy) .

So we get

(¢) The map w — 2z-w is a C-linear map C — C. Of course it is R-linear too, so it is represented
by a 2 x 2 matrix under canonical representation of C with R?. Let z = x + yi, & = a + bi
and T,(x, y) the R-linear interpretation of M,,(w) := 2z - w. We get

9. Re((x +yi)(a+bi))\ _, (Re(ax —by+(ay + bx)i)
Im((x + yi)(a+ bi))) Im(ax — by + (ay + bx)i)

— 5. ax—Dby\ _(2x -2y\ (a
- ay+bx) \2y 2x b’

So Jr(x,y) : R?> — R? is the real linear vector field corresponding to w — f'(x + yi) - w.

T,(x,y)




Exercise G3 (Fields, matrices and complex numbers)

Let K be a field and let A € K be a number which has no square root in K, i. e. there is no
element u € K with u? = A.
Let M,(K) be the set of all 2 x 2 matrices with entries in K. In this exercise we consider the

subset
a A-b
L:z{(b a ), a,beK}gMz(K).

(a) Show that L is a field with the usual matrix addition and matrix multiplication. Assure
yourself that

K>x — (J(; 2) =:x-1elL

defines an injective field homomorphism.

Hint: You may use your knowledge of matrices over fields to avoid proving every axiom for
a field.

(b) in which way is [ := ((1) g) special?

(c) What can you say about the eigenvalues of a- 1+ b - [?
(d) Find a subset of M,(RR) which is isomorphic to C.
(e) Is there a field with 9 elements?

Hints for solution:

(a) It's a very easy calculation to prove that IL is closed under addition and multiplication.
Further it’s very easy to show that the multiplication on L is commutative. So it’s only
necessary to prove every element in L \ {0} is invertible and the inverse is again in L.
Invertibility follows directly, because the determinant of such an element is a? — Ab? —it'’s a
number in K which can’t be zero by assumption on A. The inverse is an element of IL again
which can be seen easily by calculation or formulas from linear algebra.

The map K 3 x — x - 1 is obviously K-linear, multiplicative and injective. Further 1 is
the neutral element in M,(K), so the image of 1 € K is 1 € L. So it’s an injective field
homomorphism.

(b) In L the following equation holds:
2 0 A\ (0 2
—\1 0 1 0
(A0
—\0 A

So the equation X? — A = 0 has at least one solution [ in L. In fact —I is a solution, too.

(c) If b # 0 holds this element has no eigenvalues since the polynomial p(X) = (a — X)? — Ab?
has no roots in K. If b = 0, one easily sees the eigenvalue: a. Of course, the eigenspace is
2-dimensional in this case.

(d) Choose A = —1 and write down L.

(e) In Z5 which is a field there is no root for 2. So we can choose A = 2 and write down
L. Sadly: In a finite field of characteristic 2 the construction above in this exercise is not
applicable (why?).




Exercise G4 (Visualisation of complex functions)
Consider the complex polynomial f : C — C with f(z) = 2> and the following subset M of C:

M:={z€C: 0<Re(z)<1, 0<Im(z) <1}.

(a) Is M open, closed, bounded, compact, convex?

(b) Calculate the image f (M) and visualize the action of f by laying a grid into M, paramter-
izing grid lines by paths and calculating the image under f of these paths. Draw them into
a draft and look on the angles of intersecting image paths. Looks something particular?

(c) What is the image of the half disk {z € C : Im(z) > 0 and |z| < 1}?
Hints for solution:
(a) Of course M is not open. The answer of the other questions is yes.

(b) Look:

f(1+i) = 2i

i 1+i

Except in z = 0, all images of rectangular angles look like infinitesimally staying rectangu-
lar.

(c) The image is the hole unit disk D :={z € C | |z| < 1}.

Remark: The images in this hints for solution are drawn by GeoGebra and converted by GIMP




Homework

Exercise H1 (Curves and path length) (1 point)

Let y : [a,b] — R" be a regular path which parameterises a curve I' € R". The arc length
s:[a,b] — R of v is defined as follows:

s(t) := J ||}f’(x)||dx.

2-t
(a) Calculate s(t) for the path y : [1,2] — R3 with y(t) := | 2
In(t)
(b) Why do we assume the path beeing regular instead of continuously differentiable?

(c) Show thats: [a,b] — [0,l(y)] is a diffeomorphism for a regular path. Use this for writing
down a parameterisation ¢ : [0,[(y)] — ' (The parameterisation by the arc length).

(d) Consider the curve I' := {(x,y) € R? : y> —x2 =0} n[-1,1] x [—-1,1]. Is it possible
to parameterise this curve continuously differentiable? Is it possible to parameterise this
curve regularly? Prove your claim.

Hints for solution:

(@

t t 1
s(t) = J ||y’(u)||du=f \[4+4u* + —du
1 1 u
t

1
= J 2u+ —du=t?+In(t)—1.
1 u

(b) If we don’t assume ¥ to be regular we can’t exclude that the path stops and move backward
(The integrant is nonnegative!) which causes nonintuitive arc lengths in our oppinion.

(c) The function s is continuous and strict monotonically growing. So f is injective. By the
intermediate value theorem it is surjective, too. The derivative of s is ||}f’ (t)” > 0. So the
inverse map s~! : [0,I(y)] — [a,b] is differentiable, too. Since the inverse mapping is
continuously differentiable, s is a diffeomorphism.

Define ¢(t) := y(s~!(t)) and one get’s the demanded parametrisation.
£3
(d) Yes: y(t):= tz) is a continuously differentiable parametrisation of T'.

There can’t be a regular representation: Assume we have a continuously differentiable pa-
rameterisation y : [0, 1] of I'. We use y; and v, for the components of the path y. Because
(—=1,1) el and (1,1) €T there is by the mean value theorem for differentiable real func-
tions a point t, €]0, 1[ with y,(ty) =0.

Further the component functions are related by y,(t)? = y,(t)*, so we get after differenti-
ation

271(0) - 75 (t) = 3y,(0)* - v5 ().




From this equations we get y(ty) = 7,(to) = 0 or y}(ty) = 0. In the second case, y is not a
regular parametrisation. So we have to discuss the first case.

Assume that y}(to) # 0. So this is true in some open neighbourhood of t, €]0, 1[ since y]
is continuous. In this neighbourhood y,(t) is not zero for t # t,, too — elsewhere by the
mean value theorem we would have a zero of v in the neighbourhood, a contradicion. We
name this neighbourhood by U and using y,(t) #O for t € U \ {t,}. We geton U \ {t,} :

r2(£)% - 75 (t)

, _ 3
N = 2 71(t)

Using |y1(£)?] = ly,(¢)*| we geton U \ {to} :
3

—ralo]F Iyl

Y (0] =

Taking lim,_,., on both sides we get y}(to) = 0 a contradiction. So there can’t exist a regular
representation of T'.




Exercise H2 (A very important vector field) (1 point)
Consider the function f : C\ {0} — C\ {0} defined by f(z) := %

(a) Calculate the real vector field F : R? \ {0} — R?\ {0} which describes after canconical
representation of R? and C the function f.

(b) Determine all points (x, y) € R?\ {0} in which F is differentiable. For which points (x, y) €
RR? \ {0} is the Jacobian Jz(x, y) the action of a complex linear map?

Hints for solution:

(a) An easy calculation shows

X
2,2
F(X, J’) = * _+y}’ .
x2+y2

(b) The Jacobian of F in (x, y)? is given by

1 —x2+y? —2xy
JF(X’.)’)— (x2+y2)2 ( 2xy _X2+y2)°
For every (x,y)T € R?\ {0} the Jacobian Jz(x,y) corresponds to the action of the map

M,:C—-C, M,z2=w-zfor w= —m. This shouldn’t be a hard surprise.




Exercise H3 (Path connectedness) (1 point)

Let (X, d) be a metric space. We call a metric space path connected if for any two poins x,y € X
there is a continuous path y : [0,1] — X with y(0) = x and y(1) = y. Show the following
statements:

(@

(b)

(o)

(d)

(e)
)

Let (X,d) and (Y, d) be metric spaces and f : X — Y a surjective continuous map. Then Y
is path connected if X is path connected.

The set of all orthorgonal 2 x 2 matrices over R called O,(R) is not path connected. For this
you can choose any norm on M,(RR) to get a metric on O,(R): The result is independend of
the chosen norm.

Hint: You can use that the coordinate evaluation maps A — A; j are continuous. By (a) it
must be possible to find a path disconnected metric space (Y, d) and a surjective continuous
map f : 0,(R) > Y.

Let (X,d) and (Y, d) be metric spaces and let ¢ : X — Y be a homeomorphism. Then X is
path connected iff Y is path connected.

Remark: ’Iff’ means if and only if. It’s a common and often used abbreviation in mathe-
matical literature.

There is no homeomorphism f : R — C if R and C carry the natural metric induced by the
absolute value | - |.

There is no isomorphism of fields ¢ : R — C.
There is a bijection ¢ : R — C.

Remark: In the last steps we see an interesting fact: The real numbers and the complex numbers
are different fields, different metric spaces but as sets they are equal in some sense.

Hints for solution:

(@

(b)

Let x,y € Y be arbitrary. We find preimages a,b € X with f(a) = x and f(b) = y. Since
X is path connected there is a continuous path y which starts in a and ends in b. Build
7(t) := f(y(t)) and you get a path in Y starting in x and ending in y. So Y is path
connected.

There are various characterisations for a matrix beeing orthogonal: Algebraically this
means A € O,(R) iff AT - A = 1 and geometrically this means the rows of A builds an
orthogonal basis of R? and the columns as well. If we looks at the matrix entries we see the
images of the maps A —> A; ; =A — <A- €, €; > are the real intervall [—1, 1] which is path
connected and brings no obvious counterexample.

If one look at the orientation of the orthonogal basis consisting of the columns or rows of
A which are the images on the standard orthonormal basis there are two different cases:
Either the orientation is preserved or not (compared with the orientation of the stadard
orhonormal basis). If one varies A continuously the column vectors varies continuously
and so the orientation stays preserved or reflected. This can be proved elegantly using the
determinant: The determinant of A is positive iff the orientation is preserved and negative
in the other case. Further the determinant is a continuous function on M,(R) (Leibnitz
formula for the determinant!) and the image of the orthogonal matrices is {—1,1} C R. So
there cannot exist a continuous path from

-1 0 10
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(o)
(d

(e)

(f?‘:?':)

cause the determinant of A is —1 and the determinant of 1 is 1. So the space O,(R) can’t
be path connected.

Use (a) for ¢ and its by definition continuous inverse map cp"l.

Assume there is a homeomorphism f : R — C. Then there is a point x € R with f(x) = 0.
OBdA x = 0. If we restrict f to R\ {0} then we get a homeomorphism g : R\ {0} —
C\ {0}. Since C\ {0} is path connected and since R \ {0} is not path connected the inverse
map g~ ! cant be surjective and continuous, a contradiction. So there can’t exist such an
homeomorphism f.

Assume we have a field isomorphism ¢ : R — C. Then because R is an ordered field
there is an ordering on C. Because —1 < 0 and x? > 0 in every ordered field one gets
0 <i? = —1 < 0 a contradiction. So there can’t exist such an isomorphism.

Another proof without using ordering: Assume there is a field isomorphism ¢. Because
the equation X? + 1 = 0 has a solution in C it has a solution in ¢ !(C) because 0 =

2
e I (A2+1) = (cp_l(?t)) +1. But in R there is no number x with x? = —1 a contradiction.
So there can’t exist such an isomorphism.

It’s not easy to give an explicite bijective map. One can use set theoretic theorems like
the Cantor-Bernstein-Schroder theorem and only has to find an injective map f : R — C
and an injective map h : C — R. The first injection is easy to find. Instead of finding an
injective map h : C — R it is enough to find a surjective map g : R — C. This can be done
as follows: Every real numer in ]0, 1] has a unique representation x = Z,iil xi - 27% where
the sequence (x,),cy is not finally zero. Define

p(x):= (Z Xgp - 27K, szk—l'z_k) -
k=1 k=1

This is a surjective map ¢ :]0,1] — [0,1]x[0,1]\{(0,0)}. So there is of course a surjective
map [0,1] — [0,1] x [0,1]. Now we can use a surjective map ® : [0,1] x [0,1] — C to get
a surjective map g : R — C.

Of course this is very unconstructive.

The Cantor-Bernstein-Schroder theorem states: If one has an injection f : X — Y and an
injection g : Y — X then there is a bijection ® : X — Y.




