Analysis III - Complex Analysis Hints for solution for the 1. Exercise Sheet

Prof. Dr. Burkhard Kümmerer
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (Power series of real functions)
We consider the following functions which are defined on the whole real axis:

$$
f_{1}(x):=\left\{\begin{array}{ll}
e^{-\frac{1}{x^{2}}} & x \neq 0 \\
0 & x=0,
\end{array} \quad f_{2}(x):=\frac{x^{2}}{1+x^{2}}, \quad f_{3}(x):=1-e^{-\frac{x^{2}}{2}}\right.
$$

Sketch the graphs of these functions and expand them in $x_{0}=0$ into a Taylor series. Determine for each Taylor series the greatest open subset $U \subset \mathbb{R}$ such that the series represents the function.
Hints for solution: The graphs of these functions look like very simmilar:

The Taylor series of these functions behave in opposite completely different:

$$
T_{1}(x)=0, \quad T_{2}(x)=\sum_{n=0}^{\infty}(-1)^{n} \cdot x^{2 n+2}, \quad T_{3}(x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2^{k} \cdot k!} \cdot x^{2 k}
$$

The maximal open subset for T_{1} is \emptyset, because only in $x_{0}=0$ it represents f_{1}. The maximal open subset for T_{2} is] $1,1\left[\right.$ and for T_{3} is \mathbb{R}.

Exercise G2 (Complex functions and real vector fields)
We already know that \mathbb{C} is isomorphic to \mathbb{R}^{2} as a real vector space with the canonical \mathbb{R}-Basis $\{1, i\}$. In this way we identify the complex numer $z=a+b i$ with the vector $\binom{a}{b}$. For this exercise we call this identification the canonical identification of \mathbb{C} with \mathbb{R}^{2}.
Now we consider the complex polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(z):=z^{2}+1$.
(a) Show that f is complex differentiable in the following sense: For each complex number $z \in \mathbb{C}$ the limit

$$
f^{\prime}(z):=\lim _{\omega \rightarrow 0} \frac{f(z+\omega)-f(z)}{\omega}
$$

exists. Calculate $f^{\prime}(z)$ explicitely.
(b) We define the real vector field

$$
F(x, y):=\binom{\operatorname{Re}(f(x+y \cdot i)}{\operatorname{Im}(f(x+y \cdot i)} .
$$

Show that this vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is everywhere differentiable and calculate the Jacobian.
(c) Is there some remarkable relation of the Jacobian $J_{F}(x, y)$ and the value of $f^{\prime}(x+y i)$?

Hint: Any complex linear funcion $T: \mathbb{C} \rightarrow \mathbb{C}$ is of course a real linear function.

Hints for solution:

(a) Exactly as in the real case one gets:

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\omega \rightarrow 0} \frac{f(z+\omega)-f(z)}{\omega}=\lim _{\omega \rightarrow 0} \frac{z^{2}+2 z \omega+\omega^{2}+1-z^{2}-1}{\omega} \\
& =\lim _{\omega \rightarrow 0} \frac{(2 z+\omega) \omega}{\omega}=\lim _{\omega \rightarrow 0} 2 z+\omega=2 z .
\end{aligned}
$$

So the function f is complex differentiable with derivative $f^{\prime}(z)=2 z$.
(b) We calculate

$$
\begin{aligned}
F(x, y) & =\binom{\operatorname{Re}(f(x+y \cdot i)}{\operatorname{Im}(f(x+y \cdot i)}=\binom{\operatorname{Re}\left(x^{2}-y^{2}+1+2 x y i\right)}{\operatorname{Im}\left(x^{2}-y^{2}+1+2 x y i\right)} \\
& =\binom{x^{2}-y^{2}+1}{2 x y} .
\end{aligned}
$$

So we get

$$
J_{F}(x, y)=\left(\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right)
$$

(c) The map $\omega \rightarrow 2 z \cdot \omega$ is a \mathbb{C}-linear map $\mathbb{C} \rightarrow \mathbb{C}$. Of course it is \mathbb{R}-linear too, so it is represented by a 2×2 matrix under canonical representation of \mathbb{C} with \mathbb{R}^{2}. Let $z=x+y i, \omega=a+b i$ and $T_{z}(x, y)$ the \mathbb{R}-linear interpretation of $M_{2 z}(\omega):=2 z \cdot \omega$. We get

$$
\begin{aligned}
T_{z}(x, y) & =2 \cdot\binom{\operatorname{Re}((x+y i)(a+b i))}{\operatorname{Im}((x+y i)(a+b i))}=2 \cdot\binom{\operatorname{Re}(a x-b y+(a y+b x) i)}{\operatorname{Im}(a x-b y+(a y+b x) i)} \\
& =2 \cdot\binom{a x-b y}{a y+b x}=\left(\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right) \cdot\binom{a}{b} .
\end{aligned}
$$

So $J_{F}(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the real linear vector field corresponding to $\omega \rightarrow f^{\prime}(x+y i) \cdot \omega$.

Exercise G3 (Fields, matrices and complex numbers)
Let \mathbb{K} be a field and let $\lambda \in \mathbb{K}$ be a number which has no square root in \mathbb{K}, i. e. there is no element $\mu \in \mathbb{K}$ with $\mu^{2}=\lambda$.
Let $M_{2}(\mathbb{K})$ be the set of all 2×2 matrices with entries in \mathbb{K}. In this exercise we consider the subset

$$
\mathbb{L}:=\left\{\left(\begin{array}{cc}
a & \lambda \cdot b \\
b & a
\end{array}\right), \quad a, b \in \mathbb{K}\right\} \subseteq M_{2}(\mathbb{K})
$$

(a) Show that \mathbb{L} is a field with the usual matrix addition and matrix multiplication. Assure yourself that

$$
\mathbb{K} \ni x \rightarrow\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)=: x \cdot \mathbb{1} \in \mathbb{L}
$$

defines an injective field homomorphism.
Hint: You may use your knowledge of matrices over fields to avoid proving every axiom for a field.
(b) in which way is $l:=\left(\begin{array}{ll}0 & \lambda \\ 1 & 0\end{array}\right)$ special?
(c) What can you say about the eigenvalues of $a \cdot \mathbb{1}+b \cdot l$?
(d) Find a subset of $M_{2}(\mathbb{R})$ which is isomorphic to \mathbb{C}.
(e) Is there a field with 9 elements?

Hints for solution:

(a) It's a very easy calculation to prove that \mathbb{L} is closed under addition and multiplication. Further it's very easy to show that the multiplication on \mathbb{L} is commutative. So it's only necessary to prove every element in $\mathbb{L} \backslash\{0\}$ is invertible and the inverse is again in \mathbb{L}. Invertibility follows directly, because the determinant of such an element is $a^{2}-\lambda b^{2}-\mathrm{it}$'s a number in \mathbb{K} which can't be zero by assumption on λ. The inverse is an element of \mathbb{L} again which can be seen easily by calculation or formulas from linear algebra.
The map $\mathbb{K} \ni x \rightarrow x \cdot \mathbb{1}$ is obviously \mathbb{K}-linear, multiplicative and injective. Further $\mathbb{1}$ is the neutral element in $M_{2}(\mathbb{K})$, so the image of $1 \in \mathbb{K}$ is $\mathbb{1} \in \mathbb{L}$. So it's an injective field homomorphism.
(b) In \mathbb{L} the following equation holds:

$$
\begin{aligned}
l^{2} & =\left(\begin{array}{ll}
0 & \lambda \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & \lambda \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right) .
\end{aligned}
$$

So the equation $X^{2}-\lambda=0$ has at least one solution l in \mathbb{L}. In fact $-l$ is a solution, too.
(c) If $b \neq 0$ holds this element has no eigenvalues since the polynomial $p(X)=(a-X)^{2}-\lambda b^{2}$ has no roots in \mathbb{K}. If $b=0$, one easily sees the eigenvalue: a. Of course, the eigenspace is 2-dimensional in this case.
(d) Choose $\lambda=-1$ and write down \mathbb{L}.
(e) In \mathbb{Z}_{3} which is a field there is no root for $\overline{2}$. So we can choose $\lambda=\overline{2}$ and write down \mathbb{L}. Sadly: In a finite field of characteristic 2 the construction above in this exercise is not applicable (why?).

Exercise G4 (Visualisation of complex functions)
Consider the complex polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(z)=z^{2}$ and the following subset M of \mathbb{C} :

$$
M:=\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1,0 \leq \operatorname{Im}(z) \leq 1\}
$$

(a) Is M open, closed, bounded, compact, convex?
(b) Calculate the image $f(M)$ and visualize the action of f by laying a grid into M, paramterizing grid lines by paths and calculating the image under f of these paths. Draw them into a draft and look on the angles of intersecting image paths. Looks something particular?
(c) What is the image of the half disk $\{z \in \mathbb{C}: \operatorname{Im}(z) \geq 0$ and $|z|<1\}$?

Hints for solution:

(a) Of course M is not open. The answer of the other questions is yes.
(b) Look:

Except in $z=0$, all images of rectangular angles look like infinitesimally staying rectangular.
(c) The image is the hole unit disk $\mathbb{D}:=\{z \in \mathbb{C}| | z \mid<1\}$.

Remark: The images in this hints for solution are drawn by GeoGebra and converted by GIMP.

Homework

Exercise H1 (Curves and path length)
Let $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ be a regular path which parameterises a curve $\Gamma \subseteq \mathbb{R}^{n}$. The arc length $s:[a, b] \rightarrow \mathbb{R}$ of γ is defined as follows:

$$
s(t):=\int_{a}^{t}\left\|\gamma^{\prime}(x)\right\| d x
$$

(a) Calculate $s(t)$ for the path $\gamma:[1,2] \rightarrow \mathbb{R}^{3}$ with $\gamma(t):=\left(\begin{array}{c}2 \cdot t \\ t^{2} \\ \ln (t)\end{array}\right)$.
(b) Why do we assume the path beeing regular instead of continuously differentiable?
(c) Show that $s:[a, b] \rightarrow[0, l(\gamma)]$ is a diffeomorphism for a regular path. Use this for writing down a parameterisation $\phi:[0, l(\gamma)] \rightarrow \Gamma$ (The parameterisation by the arc length).
(d) Consider the curve $\Gamma:=\left\{(x, y) \in \mathbb{R}^{2}: y^{3}-x^{2}=0\right\} \cap[-1,1] \times[-1,1]$. Is it possible to parameterise this curve continuously differentiable? Is it possible to parameterise this curve regularly? Prove your claim.

Hints for solution:

(a)

$$
\begin{aligned}
s(t) & =\int_{1}^{t}\left\|\gamma^{\prime}(u)\right\| d u=\int_{1}^{t} \sqrt{4+4 u^{2}+\frac{1}{u^{2}}} d u \\
& =\int_{1}^{t} 2 u+\frac{1}{u} d u=t^{2}+\ln (t)-1 .
\end{aligned}
$$

(b) If we don't assume γ to be regular we can't exclude that the path stops and move backward (The integrant is nonnegative!) which causes nonintuitive arc lengths in our oppinion.
(c) The function s is continuous and strict monotonically growing. So f is injective. By the intermediate value theorem it is surjective, too. The derivative of s is $\left\|\gamma^{\prime}(t)\right\|>0$. So the inverse map $s^{-1}:[0, l(\gamma)] \rightarrow[a, b]$ is differentiable, too. Since the inverse mapping is continuously differentiable, s is a diffeomorphism.
Define $\phi(t):=\gamma\left(s^{-1}(t)\right)$ and one get's the demanded parametrisation.
(d) Yes: $\gamma(t):=\binom{t^{3}}{t^{2}}$ is a continuously differentiable parametrisation of Γ.

There can't be a regular representation: Assume we have a continuously differentiable parameterisation $\gamma:[0,1]$ of Γ. We use γ_{1} and γ_{2} for the components of the path γ. Because $(-1,1) \in \Gamma$ and $(1,1) \in \Gamma$ there is by the mean value theorem for differentiable real functions a point $\left.t_{0} \in\right] 0,1\left[\right.$ with $\gamma_{2}^{\prime}\left(t_{0}\right)=0$.
Further the component functions are related by $\gamma_{1}(t)^{2}=\gamma_{2}(t)^{3}$, so we get after differentiation

$$
2 \gamma_{1}(t) \cdot \gamma_{1}^{\prime}(t)=3 \gamma_{2}(t)^{2} \cdot \gamma_{2}^{\prime}(t)
$$

From this equations we get $\gamma_{1}\left(t_{0}\right)=\gamma_{2}\left(t_{0}\right)=0$ or $\gamma_{1}^{\prime}\left(t_{0}\right)=0$. In the second case, γ is not a regular parametrisation. So we have to discuss the first case.
Assume that $\gamma_{1}^{\prime}\left(t_{0}\right) \neq 0$. So this is true in some open neighbourhood of $\left.t_{0} \in\right] 0,1\left[\right.$ since γ_{1}^{\prime} is continuous. In this neighbourhood $\gamma_{1}(t)$ is not zero for $t \neq t_{0}$, too - elsewhere by the mean value theorem we would have a zero of γ_{1}^{\prime} in the neighbourhood, a contradicion. We name this neighbourhood by U and using $\gamma_{1}(t) \neq 0$ for $t \in U \backslash\left\{t_{0}\right\}$. We get on $U \backslash\left\{t_{0}\right\}$:

$$
\gamma_{1}^{\prime}(t)=\frac{3}{2} \cdot \frac{\gamma_{2}(t)^{2} \cdot \gamma_{2}^{\prime}(t)}{\gamma_{1}(t)}
$$

Using $\left|\gamma_{1}(t)^{2}\right|=\left|\gamma_{2}(t)^{3}\right|$ we get on $U \backslash\left\{t_{0}\right\}$:

$$
\left|\gamma_{1}^{\prime}(t)\right|=\frac{3}{2} \cdot\left|\gamma_{2}(t)\right|^{\frac{1}{2}} \cdot\left|\gamma_{2}^{\prime}(t)\right|
$$

Taking $\lim _{t \rightarrow t_{0}}$ on both sides we get $\gamma_{1}^{\prime}\left(t_{0}\right)=0$ a contradiction. So there can't exist a regular representation of Γ.

Exercise H2 (A very important vector field)
Consider the function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ defined by $f(z):=\frac{1}{z}$.
(a) Calculate the real vector field $F: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2} \backslash\{0\}$ which describes after canconical representation of \mathbb{R}^{2} and \mathbb{C} the function f.
(b) Determine all points $(x, y) \in \mathbb{R}^{2} \backslash\{0\}$ in which F is differentiable. For which points $(x, y) \in$ $\mathbb{R}^{2} \backslash\{0\}$ is the Jacobian $J_{F}(x, y)$ the action of a complex linear map?

Hints for solution:

(a) An easy calculation shows

$$
F(x, y)=\binom{\frac{x}{x^{2}+y^{2}}}{\frac{-y}{x^{2}+y^{2}}} .
$$

(b) The Jacobian of F in $(x, y)^{T}$ is given by

$$
J_{F}(x, y)=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left(\begin{array}{cc}
-x^{2}+y^{2} & -2 x y \\
2 x y & -x^{2}+y^{2}
\end{array}\right) .
$$

For every $(x, y)^{T} \in \mathbb{R}^{2} \backslash\{0\}$ the Jacobian $J_{F}(x, y)$ corresponds to the action of the map $M_{\omega}: \mathbb{C} \rightarrow \mathbb{C}, M_{\omega} z=\omega \cdot z$ for $\omega=-\frac{1}{(x+y i)^{2}}$. This shouldn't be a hard surprise.

Exercise H3 (Path connectedness)
Let (X, d) be a metric space. We call a metric space path connected if for any two poins $x, y \in X$ there is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$. Show the following statements:
(a) Let (X, d) and (Y, \tilde{d}) be metric spaces and $f: X \rightarrow Y$ a surjective continuous map. Then Y is path connected if X is path connected.
(b) The set of all orthorgonal 2×2 matrices over \mathbb{R} called $O_{2}(\mathbb{R})$ is not path connected. For this you can choose any norm on $M_{2}(\mathbb{R})$ to get a metric on $O_{2}(\mathbb{R})$: The result is independend of the chosen norm.
Hint: You can use that the coordinate evaluation maps $A \rightarrow A_{i, j}$ are continuous. By (a) it must be possible to find a path disconnected metric space (Y, d) and a surjective continuous $\operatorname{map} f: O_{2}(\mathbb{R}) \rightarrow Y$.
(c) Let (X, d) and (Y, \tilde{d}) be metric spaces and let $\varphi: X \rightarrow Y$ be a homeomorphism. Then X is path connected iff Y is path connected.
Remark: 'Iff' means if and only if. It's a common and often used abbreviation in mathematical literature.
(d) There is no homeomorphism $f: \mathbb{R} \rightarrow \mathbb{C}$ if \mathbb{R} and \mathbb{C} carry the natural metric induced by the absolute value $|\cdot|$.
(e) There is no isomorphism of fields $\varphi: \mathbb{R} \rightarrow \mathbb{C}$.
(f**) There is a bijection $\Phi: \mathbb{R} \rightarrow \mathbb{C}$.
Remark: In the last steps we see an interesting fact: The real numbers and the complex numbers are different fields, different metric spaces but as sets they are equal in some sense.

Hints for solution:

(a) Let $x, y \in Y$ be arbitrary. We find preimages $a, b \in X$ with $f(a)=x$ and $f(b)=y$. Since X is path connected there is a continuous path γ which starts in a and ends in b. Build $\tilde{\gamma}(t):=f(\gamma(t))$ and you get a path in Y starting in x and ending in y. So Y is path connected.
(b) There are various characterisations for a matrix beeing orthogonal: Algebraically this means $A \in O_{2}(\mathbb{R})$ iff $A^{T} \cdot A=\mathbb{1}$ and geometrically this means the rows of A builds an orthogonal basis of \mathbb{R}^{2} and the columns as well. If we looks at the matrix entries we see the images of the maps $A \rightarrow A_{i, j}=A \rightarrow\left\langle A \cdot e_{i}, e_{j}\right\rangle$ are the real intervall $[-1,1]$ which is path connected and brings no obvious counterexample.
If one look at the orientation of the orthonogal basis consisting of the columns or rows of A which are the images on the standard orthonormal basis there are two different cases: Either the orientation is preserved or not (compared with the orientation of the stadard orhonormal basis). If one varies A continuously the column vectors varies continuously and so the orientation stays preserved or reflected. This can be proved elegantly using the determinant: The determinant of A is positive iff the orientation is preserved and negative in the other case. Further the determinant is a continuous function on $M_{2}(\mathbb{R})$ (Leibnitz formula for the determinant!) and the image of the orthogonal matrices is $\{-1,1\} \subseteq \mathbb{R}$. So there cannot exist a continuous path from

$$
A:=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \text { to } \quad \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

cause the determinant of A is -1 and the determinant of $\mathbb{1}$ is 1 . So the space $O_{2}(\mathbb{R})$ can't be path connected.
(c) Use (a) for φ and its by definition continuous inverse map φ^{-1}.
(d) Assume there is a homeomorphism $f: \mathbb{R} \rightarrow \mathbb{C}$. Then there is a point $x \in \mathbb{R}$ with $f(x)=0$. $\operatorname{OBdA} x=0$. If we restrict f to $\mathbb{R} \backslash\{0\}$ then we get a homeomorphism $g: \mathbb{R} \backslash\{0\} \rightarrow$ $\mathbb{C} \backslash\{0\}$. Since $\mathbb{C} \backslash\{0\}$ is path connected and since $\mathbb{R} \backslash\{0\}$ is not path connected the inverse map g^{-1} cant be surjective and continuous, a contradiction. So there can't exist such an homeomorphism f.
(e) Assume we have a field isomorphism $\varphi: \mathbb{R} \rightarrow \mathbb{C}$. Then because \mathbb{R} is an ordered field there is an ordering on \mathbb{C}. Because $-1<0$ and $x^{2} \geq 0$ in every ordered field one gets $0 \leq i^{2}=-1<0$ a contradiction. So there can't exist such an isomorphism.
Another proof without using ordering: Assume there is a field isomorphism φ. Because the equation $X^{2}+1=0$ has a solution in \mathbb{C} it has a solution in $\varphi^{-1}(\mathbb{C})$ because $0=$ $\varphi^{-1}\left(\lambda^{2}+1\right)=\left(\varphi^{-1}(\lambda)\right)^{2}+1$. But in \mathbb{R} there is no number x with $x^{2}=-1$ a contradiction. So there can't exist such an isomorphism.
(f**) It's not easy to give an explicite bijective map. One can use set theoretic theorems like the Cantor-Bernstein-Schröder theorem and only has to find an injective map $f: \mathbb{R} \rightarrow \mathbb{C}$ and an injective map $h: \mathbb{C} \rightarrow \mathbb{R}$. The first injection is easy to find. Instead of finding an injective map $h: \mathbb{C} \rightarrow \mathbb{R}$ it is enough to find a surjective map $g: \mathbb{R} \rightarrow \mathbb{C}$. This can be done as follows: Every real numer in $] 0,1$] has a unique representation $x=\sum_{k=1}^{\infty} x_{k} \cdot 2^{-k}$ where the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is not finally zero. Define

$$
\phi(x):=\left(\sum_{k=1}^{\infty} x_{2 k} \cdot 2^{-k}, \quad \sum_{k=1}^{\infty} x_{2 k-1} \cdot 2^{-k}\right) .
$$

This is a surjective map $\phi:] 0,1] \rightarrow[0,1] \times[0,1] \backslash\{(0,0)\}$. So there is of course a surjective map $[0,1] \rightarrow[0,1] \times[0,1]$. Now we can use a surjective map $\Phi:[0,1] \times[0,1] \rightarrow \mathbb{C}$ to get a surjective map $g: \mathbb{R} \rightarrow \mathbb{C}$.
Of course this is very unconstructive.
The Cantor-Bernstein-Schröder theorem states: If one has an injection $f: X \rightarrow Y$ and an injection $g: Y \rightarrow X$ then there is a bijection $\Phi: X \rightarrow Y$.

