
> >

> >

(3)(3)

> >

> >

(1)(1)

> >

(2)(2)

> >

(4)(4)

> >

> >

Background know-how
Limits of Floating-Point arithmetic in C

#include <stdio.h>		
int main(void) { 		
 double x=0.7;
 int i = 0;	 	
 while(i < 10) {	

 i=i+1;
 }
}

The result of the C-program is rubbish. In the last round it is
y = -1127140547773912.5

Limits of Floating-Point arithmetic in Maple

0.700000000

Numbers, their representations and
more and less native number representations for a digital computer

 numbers can be elements from various sets. e.g. x2Z, x2;.
 each number has various representations. e.g.
 17
 XVII
 IIIII IIIII IIIII II

 usually, we encode numbers with the help of base-10 digits, i.e. the alphabet

 A string is then interpreted as

 Example:

 What happens, if we use another base, another alphabet?
 E.g. with "bits", we have:
 = {0, 1}

 = {0, 1, 2, 3, 4, 5 , 6, 7, 8, 9, a, b, c, d, e, f}

 0x11 (so called hex numbers)

integer variables of fixed length are the most natural and mostly used kind of variables

Bitstrings are interpreted as numbers in the dual number system.

bit 0
bit 1

bit 30
bit 31 (MSB)

0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1

The value then is .

My idealized computer

My idealized memory

How to compute with binary numbers?

	 base-2 base-10

 sum: 1 0 1 1 9 9
 +

 1 1 1 0 1 	

	 product:

 1011
 0000
 1011
 110111

Generalized binary fixed-point and floating-point numbers

0.75

0.75 = 1 +

0.7

0.7 = 1 + + 1 + + ...

the first 64 bits:
0.1011001100110011001100110011001100110011001100110011001100110011

0.7 is a periodic number in the binary system.

(5)(5)

(7)(7)

(6)(6)

-> representation errors in IEEE format is not avoidable

Wrong results in spite of exact computations

Expand

The case

The fibonacci series is defined as follows:
fib(0) = 0, fib(1) = 1 and fib(n+1) = fib(n-1) + fib(n)
We would like to know whether f(n) might be expressible as

We would like to get some information fast and without lots of hand work.
How can we start working at the exercise? How can Maple help us?

Solution:
Relativly soon, it is clear that:

0
and

1

Additionally, it must be true that

(10)(10)

(8)(8)

(9)(9)

(11)(11)

Some large numbers can quicjkly be tested, the expression may be simpified via the command simlify.
An example is 876:

0

The procedure becomes by far more tricky, if we want Maple to show equality for general n. Sometimes,
it helps to expand the expression.

0

(14)(14)

> >

> >

(20)(20)

> >

(12)(12)

> >

> >

> >

> >

> >

(13)(13)

(19)(19)
> >

> >

(18)(18)

> >

> >

> >

(21)(21)

(15)(15)
> >

(16)(16)

> >

(17)(17)

false

Error, out of bound assignment to a list

83621143489848422977

83621143489848422977

> >

(21)(21)83621143489848422977

