Background know-how
Limits of Floating-Point arithmetic in C

#include <stdio.h>[]
int main(void) { [J
double x=0.7;
inti= 0;0
while(i < 10) {[
x=11.0*x-7.0;
printf(“%d: %.201f\n”,i,x);
1=i+1;
§
§

y =-1127140547773912.5

Limits of Floating-Point arithmetic in Maple

7.0
> restart;x == ——;
restart; x 10

x :=0.7000000000
> forifrom 1 to30 do

x=11x-7;
| enddo:
> X,
i 0.700000000
> restart, x = ﬂ :
| 3
> forifrom 1 to30 do
cm3x- 2.
3 b
| enddo:
> X,
-10294.22328

> x=0:¢:=time() :

for i from 1 to 5000000 do

r = rand() mod 10;

for j from 1 tordo

x=x-+1;

end do:
end do:
x, time() — t;

22492822, 27.480

[N umbers, their representations and

The result of the C-program is rubbish. In the last round it is

more and less native number representations for a digital computer

0y

(0))

(&)

(C))

numbers can be elements from various sets. e.g. X€Z, x EN.
each number has various representations. e.g.

17

XVII

TTIIT TITIT ITIIT 11

usually, we encode numbers with the help of base-10 digits, i.e. the alphabet
¥=1{0,1,2,3,4,5,6,7,8,9}.

A string s = (an T alao) e Zn is then interpreted as

n—1

Zal.-loi . Example: 17=1-10" +7-10°
i=0

What happens, if we use another base, another alphabet?
E.g. with "bits", we have:

$,=1{0,1} 17,,=12* 402"+ 02>+ 02" +1-2°=10001,

Z16: {09 17293947596373 8393a9bocad7eaf}
171021-161 +1-16°=0x11 (so called hex numbers)

integer variables of fixed length are the most natural and mostly used kind of variables

Bitstrings are interpreted as numbers in the dual number system.

01000110001010110101000010000101

R AR R LR R EE R, bit 30

The value then is bity, 2> + bity,2>" + ... + bit,2".

RAM memory module

sy
; soesa)

connectors fo peripherals (e.g. mouse, USB, ethemet ...)

My idealized computer

i CPU Main [Keyboard] Disk
L Memory N
I I] Bus | I

My idealized memory

How to compute with binary numbers?

0 base-2
sum: 1 01 1 99
+ —1 1 + -3
1 11 0 1020
0 product:
1011 - 101
1011
0000

1011
110111

Generalized binary fixed-point and floating-point numbers

0.75
075- 1+ +1.+ —o.11
' 2 4 T2
0.7

1 | 1 1
J=1—40-—+1-—+1-— + ...
07120418116

the first 64 bits:

base-10

0.1011001100110011001100110011001100110011001100110011001100110011

0.7 is a periodic number in the binary system.

floating point variables

0/1 sequences are interpreted as sign (s) , mantissa (m) and exponent (p)

000000010101010110101000010000101

_

Y ~

LYJ\ AN
s p m

the resulting number then is s-m-2P

In the IEEE-754 standard, 127 is added to the exponent, and the leading 1 of
the mantissa is not stored. The exponent has 8 bits and the mantissa 23

explicit bits, thus 24 implicit bits.

l_(;_)1\0000011}\@0101101010000100001@/
Y

\\/‘

S p’ m

-> representation errors in IEEE format is not avoidable
>x=0.7;x=11.0 - x—7.0; increases the error by a factor of 10

Wrong results in spite of exact computations

Expand

3

x-(x +3) .
expand(—x.(x_’_l) j,
i n 3

x+1 x+1

(C))

The case

The fibonacci series is defined as follows:
fib(0) = 0, fib(1) = 1 and fib(n+1) = fib(n-1) + fib(n)
We would like to know whether f(n) might be expressible as

- (-

We would like to get some information fast and without lots of hand work.
How can we start working at the exercise? How can Maple help us?

Solution:
Relativly soon, it is clear that:

L((15E) - (5]

0 (6)
and

() -

1 @)
Additionally, it must be true that
L () (5]) L (5B) - (=5))-L
.[(#jn—l—l_[l_ﬁ]n—klj

2

Some large numbers can quicjkly be tested, the expression may be simpified via the command simlify.
An example is 876:

A e i
() (E)

0 ®

876 — 1 876

The procedure becomes by far more tricky, if we want Maple to show equality for general n. Sometimes,
it helps to expand the expression.

2

() e () -]

+%ﬁ)n ©

(=557}

an

a.
7~ N\
&.

3
S
VR
7~

-

() (S () - (e

false

j> restart; sff == [seq(0, i=0..99)]:
> sff[0] = 0;sff[1] = 1;

Error. out of bound assignnment to a list

sffy =1
> [0+ 17 = 0y [1 +1]=1;

stf; =0

sty =1
> 2 4+ 17 = sff [0+ 1]+ sf[1 +11]:

sffy =1

> for i from 3 to 99 do
sffli+1]1=sffli—1+1]+sffli—2+1];
if i =97 then print(sff[i + 1]) fi;
end do:
83621143489848422977

> restart; sff == Array(0..10000, fill=0) :

> sff[0] = 0;sf/[1] = 1;

stfy =0
] sif; =1
> sff[2] = sff[0] + sff[1];
i sty =1
> for i from 3 to 10000 do
siilil = sffli— 1] + sff[i —2];
if i =97 then print(sff[i]) fi;
end do:
i 83621143489848422977
> sffl == sff[0]; sff2 == sff [11; sf13 == sff[2];
sffl =0
sff2 =1
sfi3 =1

> for i from 3 to 10000 do
sff4 == sff3 + sff2;
sff2 == sff3 : sff3 = sff4;
if i =97 then print(sff3) fi;

(12)

13)

(14)

15)

(16)

a7

(18)

19)

(20)

end do:
83621143489848422977 21)

