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Mathematical variables, parameters and placeholders

Equations and linear equation systems

e.g.:  is equivalent to . 

Application of pq-formula results in    .

With  and , we get

=  and   = 

'Nice to have' is something re-usable.
##show

##re-usable, time-dependent variables. Here place-holder a:
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Simplification and Evaluation (numeric vs. symbolic, algorithmic vs. 
heuristic)

Numbers: 

Symbolic expressions: 
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  The following expression leads to a surprising answer. Why?  Thus: be careful!
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Complex Numbers
    - a complex number z is of the form a + bi, with = -1 and a,b 2=. a = Re(z) is the real part of z and 
b=Im(z) 
      is the imaginary part of z. An equivalent definition is via a two dimensional vector (a,b).
    - two complex numbers are equal if and only if their real parts and their imaginary parts are equal 
  
    - Complex numbers are added, subtracted, multiplied, and divided by formally applying the 
associative, 
      commutative and distributive laws of algebra, together with the equation = -1.
          Addition        : (a+bi) + (c+di) = (a+c) + (b+d)i          [in vector notation: (a,b) + (c,d) = (a+c, b+d) 
]
          Substraction  : (a+bi) - (c+di) = (a-c) + (b-d)i
          Multiplication: 

          Division        : 

    - with the given definitions of addition, substraction, multiplication, division, and
          the additive identity (zero-element) 0 + 0i,
          the multiplicative identity (one-element) 1 + 0i,
          the addidive inverse of a number a + bi: -a - bi, and

          the multiplicative inverse of a + bi: 

      the complex numbers C are a field (dt: Körper)

Numeric complex computations

1

Symbolic complex computations
Simplifying an expression

1
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Programming with proc, for and if

Find all local maxima of a polynomial f
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3.684775852

6.888828816
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## analyze procedure, list, set, sequence

1.431724935
4.453992057
15.46691845
30.25471480

## sequences
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## lists

## sets

Syntactical description of control structures (homework):

Flow Control (if, for, while, ...)

     if <conditional expression> then <statement sequence>
               | elif <conditional expression> then <statement sequence> |
               | else <statement sequence> |
     end if
   (Note: Phrases located between | | are optional.) 

      The for ...while ... do loop
      | for <name> | | from <expr> | | by <expr> | | to <expr> | | while <expr> |
                 do <statement sequence> end do;

      OR

      | for <name> | | in <expr> | | while <expr> |
                 do <statement sequence> end do;

(Note: Clauses shown between | | above are optional, and can appear in any order, except that the for 
clause, if used, must appear first.)
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Procedures

Flow control constructions, simple commands and comparison operators can be bound together; in a so 
called
procedure. The simplest possible procedure looks as follow. 

  proc(parameter sequence) 
     statements;
  end proc:   


