
(2)(2)

(3)(3)

(4)(4)

(6)(6)

(1)(1)

(5)(5)

(7)(7)

Mathematical variables, parameters and placeholders

Equations and linear equation systems

e.g.: is equivalent to .

Application of pq-formula results in .

With and , we get

= and =

'Nice to have' is something re-usable.
##show

##re-usable, time-dependent variables. Here place-holder a:

2

> >

(12)(12)

> >

> >

> >

> >

(8)(8)

> >

> >

> >

> >

(15)(15)

(14)(14)

> >

(13)(13)

(9)(9)

(10)(10)

(11)(11)

(16)(16)

Simplification and Evaluation (numeric vs. symbolic, algorithmic vs.
heuristic)

Numbers:

Symbolic expressions:

2

a

 The following expression leads to a surprising answer. Why? Thus: be careful!

(20)(20)

> >

> >

> >

(17)(17)

> >

(19)(19)

(18)(18)

> >

> >

Complex Numbers
 - a complex number z is of the form a + bi, with = -1 and a,b 2=. a = Re(z) is the real part of z and
b=Im(z)
 is the imaginary part of z. An equivalent definition is via a two dimensional vector (a,b).
 - two complex numbers are equal if and only if their real parts and their imaginary parts are equal

 - Complex numbers are added, subtracted, multiplied, and divided by formally applying the
associative,
 commutative and distributive laws of algebra, together with the equation = -1.
 Addition : (a+bi) + (c+di) = (a+c) + (b+d)i [in vector notation: (a,b) + (c,d) = (a+c, b+d)
]
 Substraction : (a+bi) - (c+di) = (a-c) + (b-d)i
 Multiplication:

 Division :

 - with the given definitions of addition, substraction, multiplication, division, and
 the additive identity (zero-element) 0 + 0i,
 the multiplicative identity (one-element) 1 + 0i,
 the addidive inverse of a number a + bi: -a - bi, and

 the multiplicative inverse of a + bi:

 the complex numbers C are a field (dt: Körper)

Numeric complex computations

1

Symbolic complex computations
Simplifying an expression

1

(22)(22)

(23)(23)

(21)(21)
> >

Programming with proc, for and if

Find all local maxima of a polynomial f

x
10 20 30 40

0

100

200

300

400

500

600

(28)(28)

(30)(30)

(27)(27)

(31)(31)

(25)(25)

(26)(26)

(21)(21)

(24)(24)

(29)(29)

> >

3.684775852

6.888828816

2

analyze procedure, list, set, sequence

1.431724935
4.453992057
15.46691845
30.25471480

sequences

(34)(34)

(36)(36)

(33)(33)

(37)(37)

(21)(21)

(32)(32)

(35)(35)

> >

lists

sets

Syntactical description of control structures (homework):

Flow Control (if, for, while, ...)

 if <conditional expression> then <statement sequence>
 | elif <conditional expression> then <statement sequence> |
 | else <statement sequence> |
 end if
 (Note: Phrases located between | | are optional.)

 The for ...while ... do loop
 | for <name> | | from <expr> | | by <expr> | | to <expr> | | while <expr> |
 do <statement sequence> end do;

 OR

 | for <name> | | in <expr> | | while <expr> |
 do <statement sequence> end do;

(Note: Clauses shown between | | above are optional, and can appear in any order, except that the for
clause, if used, must appear first.)

(32)(32)

(21)(21)
> >

Procedures

Flow control constructions, simple commands and comparison operators can be bound together; in a so
called
procedure. The simplest possible procedure looks as follow.

 proc(parameter sequence)
 statements;
 end proc:

