Mathematical variables, parameters and placeholders

Equations and linear equation systems

e.g.: $2 \cdot x^{2}+5 \cdot x-2=0$ is equivalent to $x^{2}+\frac{5}{2} \cdot x-1=0$.

Application of pq-formula results in $x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}$.
With $p=\frac{5}{2}$ and $q=-1$, we get

$$
\begin{align*}
& x_{1}=-\frac{\frac{5}{2}}{2}+\sqrt{\left(\frac{\frac{5}{2}}{2}\right)^{2}+1} ; \text { and } \begin{aligned}
& x_{2}= \\
&\left.-\frac{\frac{5}{2}}{2}-\sqrt{\left(\frac{5}{2}\right.}\right)^{2}+1
\end{aligned} \\
&-\frac{5}{4}-\frac{1}{4} \sqrt{41} \tag{1}\\
&-\frac{5}{4}+\frac{1}{4} \sqrt{41} \tag{2}
\end{align*}
$$

'Nice to have' is something re-usable.
\#\#show
$p q:=\boldsymbol{p r o c}(p, q)$
return $-\frac{\mathrm{p}}{2}+\sqrt{\left(\frac{\mathrm{p}}{2}\right)^{2}-q},-\frac{\mathrm{p}}{2}-\sqrt{\left(\frac{\mathrm{p}}{2}\right)^{2}-q}$; \#returns 2 comma-separated expressions
end proc;
$\operatorname{proc}(p, q)$

$$
\text { return }-1 / 2 * p+\operatorname{sqrt}\left(1 / 4^{*} p^{\wedge} 2-q\right),-1 / 2 * p-\operatorname{sqrt}\left(1 / 4^{*} p^{\wedge} 2-q\right)
$$

end proc
$p q\left(\frac{5}{2},-1\right)$;

$$
\begin{equation*}
-\frac{5}{4}+\frac{1}{4} \sqrt{41},-\frac{5}{4}-\frac{1}{4} \sqrt{41} \tag{4}
\end{equation*}
$$

\#\#re-usable, time-dependent variables. Here place-holder a:
$a:=2 ;$

$$
\begin{equation*}
2 \tag{5}
\end{equation*}
$$

$a:=x^{2}+1 ;$

$$
\begin{equation*}
x^{2}+1 \tag{6}
\end{equation*}
$$

$a:=a+1 ;$

$$
\begin{equation*}
x^{2}+2 \tag{7}
\end{equation*}
$$

Simplification and Evaluation (numeric vs. symbolic, algorithmic vs. heuristic)

restart;
Numbers: $\frac{18}{6}, \frac{18.01}{6.03}, \sqrt{2}, 6 \cdot \sqrt{2}, \sqrt{2}^{2}$

$$
\begin{equation*}
3,2.986733002, \sqrt{2}, 6 \sqrt{2}, 2 \tag{8}
\end{equation*}
$$

Symbolic expressions: $\frac{a \cdot(b+1)}{a}$;

$$
\begin{equation*}
b+1 \tag{9}
\end{equation*}
$$

$$
\begin{array}{r}
\text { factor }\left(x^{2}+\frac{2 \cdot p}{2} \cdot x+\left(\frac{p}{2}\right)^{2}\right) ; \text { \#symbolic, exact, algorithmic } \\
\frac{1}{4}(p+2 x)^{2} \tag{10}
\end{array}
$$

$$
x:=2
$$

$$
\begin{equation*}
2 \tag{11}
\end{equation*}
$$

The following expression leads to a surprising answer. Why? Thus: be careful!

Complex Numbers

- a complex number z is of the form $a+b i$, with $i^{2}=-1$ and $a, b \in \mathbb{R} . a=\operatorname{Re}(z)$ is the real part of z and $b=\operatorname{Im}(z)$
is the imaginary part of z. An equivalent definition is via a two dimensional vector (a, b).
- two complex numbers are equal if and only if their real parts and their imaginary parts are equal
- Complex numbers are added, subtracted, multiplied, and divided by formally applying the associative,
commutative and distributive laws of algebra, together with the equation $i^{2}=-1$.
Addition $:(a+b i)+(c+d i)=(a+c)+(b+d) i \quad[$ in vector notation: $(a, b)+(c, d)=(a+c, b+d)$
]
Substraction : $(\mathrm{a}+\mathrm{bi})-(\mathrm{c}+\mathrm{di})=(\mathrm{a}-\mathrm{c})+(\mathrm{b}-\mathrm{d}) \mathrm{i}$
Multiplication: $(a+b i) \cdot(c+d i)=(a c-b d)+(b c+a d) i$
Division $: \frac{a+b i}{c+d i}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i$, with c ord not equal to 0
- with the given definitions of addition, substraction, multiplication, division, and the additive identity (zero-element) $0+0 \mathrm{i}$,
the multiplicative identity (one-element) $1+0 \mathrm{i}$,
the addidive inverse of a number a $+\mathrm{bi}:-\mathrm{a}-\mathrm{bi}$, and
the multiplicative inverse of $\mathrm{a}+\mathrm{bi}: \frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i$,
the complex numbers \mathbb{C} are a field (at: Körper)

Numeric complex computations

$\left[>\frac{(3+3 \cdot I)}{(2+6 \cdot I)} ;\right.$

$$
\begin{equation*}
\frac{3}{5}-\frac{3}{10} I \tag{17}
\end{equation*}
$$

$\left[>\left(\frac{3}{3^{2}+5^{2}}+\frac{(-5)}{3^{2}+5^{2}} \cdot I\right) \cdot(3+5 \cdot I) ;\right.$

Symbolic complex computations

Simplifying an expression

$$
\begin{align*}
& {[>\text { restart; }} \\
& {\left[\begin{array}{l}
>\left(\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} \cdot I\right) \cdot(a+b \cdot I) \text { assuming } a>0 ; \\
\left(\frac{a}{a^{2}+b^{2}}-\frac{\mathrm{I} b}{a^{2}+b^{2}}\right)(a+\mathrm{I} b) \\
{[>} \\
\gg \operatorname{simplify}(\%) ;
\end{array}\right.} \tag{19}\\
& \hline \square
\end{align*}
$$

$\mid>\operatorname{solve}\left(x^{2}+1=0\right) ;$
I, -I

Programming with proc, for and if

Find all local maxima of a polynomial f

$$
\begin{aligned}
& f:= x \rightarrow-\frac{683161}{1133371470} x^{5}+\frac{11752043}{302232392} x^{4}-\frac{112862553}{151116196} x^{3}+\frac{198166575}{43176056} x^{2}-\frac{416037877}{46260060} x \\
&+2 ; \\
& x \rightarrow-\frac{683161}{1133371470} x^{5}+\frac{11752043}{302232392} x^{4}-\frac{112862553}{151116196} x^{3}+\frac{198166575}{43176056} x^{2}-\frac{416037877}{46260060} x \\
&+2 \\
& \operatorname{plot}(f(x), \text { view }=[0 . .40,-200 . .600], x=0 . .40)
\end{aligned}
$$

f solve $\left(f^{\prime}(x)=0, x\right)$;

```
\(\operatorname{evalf}(\operatorname{eval}(\operatorname{diff}(\operatorname{diff}(f(x), x), x), x=1.431724935))\);
                                    3.684775852
\(\operatorname{evalf}\left(f^{\prime \prime}(4.453992057)\right) ; \operatorname{evalf}\left(f^{\prime \prime}(15.46691845)\right) ; \operatorname{evalf(f"(30.25471480));}\)
                                    -2.588142884
                                    6.888828816
                                    -33.14325482
maxima \(:=\boldsymbol{\operatorname { p r o c }}(f)\)
    local \(c, z, e l\);
    \(c:=0\);
    \(z:=\left[f\right.\) solve \(\left.\left(f^{\prime}(x)=0, x\right)\right] ;\)
    for \(e l\) in \(z\) do
        if \(f^{\prime \prime}(e l)<0\) then \(c:=c+1\);
        end if;
    end do;
    return \(c\);
end proc;
\(\operatorname{proc}(f)\)
    local \(c, z, e l\);
    \(c:=0\);
    \(z:=[f\) solve \((\operatorname{diff}(f(x), x)=0, x)] ;\)
    for \(e l\) in \(z\) do if \(\operatorname{eval(\operatorname {diff}}(f(x), x, x), x=e l)<0\) then \(c:=c+1\) end if end do;
    return \(c\)
end proc
maxima( \(f\) );
```

$$
2
$$

\#\# analyze procedure, list, set, sequence
$z:=\left[f\right.$ solve $\left.\left(f^{\prime}(x)=0, x\right)\right] ;$
[1.431724935, 4.453992057, 15.46691845, 30.25471480]
for $e l$ in z do
print(el)
end do;
1.431724935
4.453992057
15.46691845
30.25471480
\#\# sequences
$s:=3,5,7 ;$

$$
\begin{equation*}
3,5,7 \tag{30}
\end{equation*}
$$

$t:=2,4,6 ;$
$2,4,6$
$t 2:=s, t ;$

$$
\begin{equation*}
3,5,7,2,4,6 \tag{32}
\end{equation*}
$$

\#\# lists

$$
\begin{array}{lc}
l 1:=[3,5,7] ; & {[3,5,7]} \\
l 2:=[2,4,6] ; & {[2,4,6]} \\
l 3:=[l 2, l 1] ; & {[[2,4,6],[3,5,7]]} \\
\text { \#\# sets } & \\
s 1:=\{1,2,3,4\} ; s 2:=\{3,4,5\} ; & \\
& \{1,2,3,4\} \\
s 3:=s 1 \text { union } s 2 ; & \{3,4,5\} \\
& \{1,2,3,4,5\}
\end{array}
$$

Syntactical description of control structures (homework):

Flow Control (if, for, while, ...)
if <conditional expression> then <statement sequence>
\mid elif $<$ conditional expression> then $<$ statement sequence> \mid
\mid else $<$ statement sequence $>\mid$
end if
(Note: Phrases located between || are optional.)

The for ...while ... do loop | for <name> ||from <expr> || by <expr>||to <expr>|| while <expr> | do $<$ statement sequence $>$ end do;

OR
| for <name> || in <expr> || while <expr> |
do $<$ statement sequence> end do;
(Note: Clauses shown between || above are optional, and can appear in any order, except that the for clause, if used, must appear first.)

Procedures

Flow control constructions, simple commands and comparison operators can be bound together; in a so called
procedure. The simplest possible procedure looks as follow.
proc(parameter sequence)
statements;
end proc:

