Analysis III – Complex Analysis 8. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics Prof. Dr. Burkhard Kümmerer Andreas Gärtner Walter Reußwig

Groupwork

Exercise G1 (A strange Laurent series expansion)

Consider the following Laurent series expansion of the zero function:

$$0 = \frac{1}{z-1} + \frac{1}{1-z} = \frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} + \frac{1}{1-z}$$
$$= \sum_{n=1}^{\infty} \frac{1}{z^n} + \sum_{n=0}^{\infty} z^n = \sum_{n=-\infty}^{\infty} z^n.$$

This contradicts the uniqueness of the Laurent series expansion, doesn't it?

Exercise G2 (Some Laurent series expansions)

Consider the holomorphic function $f : \mathbb{C} \setminus \{1,3\} \to \mathbb{C}$, $f(z) = \frac{2}{z^2 - 4z + 3}$. Use the partial fraction decomposition

$$f(z) = \frac{1}{1-z} + \frac{1}{z-3}$$

to expand *f* on the following annuli into a Laurent series in $z_0 = 0$:

 $R_1 := \{ z \in \mathbb{C} : \ 0 < |z| < 1 \}, \quad R_2 := \{ z \in \mathbb{C} : \ 1 < |z| < 3 \}, \quad R_3 := \{ z \in \mathbb{C} : \ 3 < |z| < 42 \}.$

Exercise G3 (On residues of holomorphic functions)

Let $f : \Omega \to \mathbb{C}$ be a holomorphic function and assume there is an r > 0 such that $K_{r,0}(z_0) \subseteq \Omega$ where $K_{r,0}(z_0) := \{z \in \mathbb{C} : 0 < |z - z_0| < r\}$.

Remember that the *residue of* f *in* z_0 is defined by $\operatorname{Res}(f, z_0) := a_{-1}$ where $\sum_{k=-\infty}^{\infty} a_k \cdot z^k$ is the Laurent series expansion of f converging in $K_{r,0}(z_0)$ to f.

(a) Let n ∈ N be a natural number such that z → (z − z₀)ⁿ · f(z) has a holomorphic extension on Ω ∪ {z₀} (e. g. if f has in z₀ a pole of order at most n). Show:

$$\operatorname{Res}(f, z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \left((z - z_0)^n \cdot f(z) \right).$$

WS 11/12

(b) Let $g, h : \Omega \cup \{z_0\} \to \mathbb{C}$ be holomorphic. Assume that *h* has in z_0 a zero of order 1 and set $f(z) := \frac{g(z)}{h(z)}$. Show:

$$\operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}.$$

(c) Calculate the following integrals:

(i)
$$\int_{C_1(0)} \frac{e^z}{\sin(z)} dz$$
, (ii) $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx$, $\int_{C_1(0)} \frac{1}{|z|} dz$.

Exercise G4 (Singularities)

If $f : \Omega \to \mathbb{C}$ is holomorphic we call a point $z_0 \in \mathbb{C}$ an *isolated singularity* of f if $z_0 \notin \Omega$ and $K_{r,0}(z_0) = \{z \in \mathbb{C} : 0 < |z - z_0| < r\} \subseteq \Omega$ for some r > 0. We want to discuss three types of singularities:

An isolated singularity z_0 of f is called a *removable singularity* if f has a holomorphic extension on $\Omega \cup \{z_0\}$.

An isolated singularity z_0 of f is called a *pole* if z_0 is not a removable singularity of f and there exists a n > 0 such that $z \to (z - z_0)^n \cdot f(z)$ has a removable singularity in z_0 . The smallest number $n \in \mathbb{N}$ with this property is called the *order* of the pole.

An isolated singularity z_0 of f is called an *essential singularity* if z_0 is neither a removable singularity nor a pole.

- (a) Find an example for each kind of an isolated singularity.
- (b) Show: Let $f : \Omega \to \mathbb{C}$ be holomorphic and z_0 be an isolated singularity. Then there are equivalent:
 - (i) The singularity z_0 is removable.
 - (ii) There is a power series expansion of f in z_0 converging on $K_r(z_0)$.
- (c) Show: Let $f : \Omega \to \mathbb{C}$ be holomorphic and $z_0 \in \Omega$ be an isolated singularity. Then there are equivalent:
 - (i) The singularity z_0 is a pole.
 - (ii) The principal part of the Laurent series expansion of f in z_0 on $K_{r,0}(z_0)$ is not trivial and all but finitely many coefficients vanish.
- (d) Consider the holomorphic functions

$$f(z) = \frac{\sin(z)}{z}, \quad g(z) = \sin\left(\frac{1}{z}\right), \quad h(z) = \frac{1}{\sin(z)}$$

on there natural domains. Each of these functions have in $z_0 = 0$ an isolated singularity. Classify the isolated singularities. **Hint:** You could use the result of (f).

- (e) In excercise G2 you determined some Laurent series in z_0 with infinite principal part. Does this mean the function f has an essential singularity in $z_0 = 0$?
- (f) Let $f : \Omega \to \mathbb{C}$ be holomorphic and $z_0 \in \Omega$ be a pole of f. Then $\lim_{z \to z_0} |f(z_0)| = \infty$.
- (g) The function $f(z) := \exp\left(-\frac{1}{z^2}\right)$ has an essential singularity in $z_0 = 0$. Show: For each $\omega \in \mathbb{C}$ there is a null sequence $(z_n)_{n \in \mathbb{N}}$ with $\lim_{n \to \infty} f(z_n) = \omega$.

The phenomenon in (g) is typical for essential singularities cf. the Casorati-Weierstrass Theorem or – a much stronger fact – the Big Picard Theorem in the literature.