Analysis III – Complex Analysis 7. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics Prof. Dr. Burkhard Kümmerer Andreas Gärtner Walter Reußwig

Groupwork

Exercise G1 (The Fundamental Theorem of Algebra)

Use Liouville's Theorem to prove the Fundamental Theorem of Algebra: Every polynomial $p : \mathbb{C} \to \mathbb{C}$ which has no root is constant.

Hint: Consider the rational function $f(z) = \frac{1}{p(z)}$. Show this function has to be bounded if *p* has no roots.

Exercise G2 (Complex powers of complex numbers) Let $z, \omega \in \mathbb{C} \setminus \{0\}$ be complex numbers and let $l : \Omega \to \mathbb{C}$ be a logarithm with $z \in \Omega$. We define

 $z^{\omega} := \exp(l(z) \cdot \omega).$

Of course this definition depends on the logarithm *l*. For simplicity we shall choose the principal value Log of the logarithm, i. e. the logarithm function on $\Omega := \mathbb{C} \setminus] - \infty$, 0[with Log(1) = 0.

(a) Determine i^i .

(b) One might expect the identities

$$z^{\omega_1+\omega_2} = z^{\omega_1} \cdot z^{\omega_2},$$

$$z_1^{\omega} \cdot z_2^{\omega} = (z_1 \cdot z_2)^{\omega},$$

$$(z^{\omega_1})^{\omega_2} = z^{\omega_1 \cdot \omega_2}$$

Discuss this.

Exercise G3 (The complex sine function)

- (a) Determine every zero of the complex sine, i. e. every $z \in \mathbb{C}$ with sin(z) = 0.
- (b) Show: The function $f(z) := \frac{\sin(z)}{z}$ is holomorphic on $\Omega := \mathbb{C} \setminus \{0\}$ and has a unique holomorphic extension to an entire function.
- (c) Determine the integrals

(i)
$$\int_{C_1(0)} \frac{z}{\sin(z)} dz$$
 and (ii) $\int_{C_1(0)} \frac{1}{\sin(z)} dz$.

WS 11/12 January 24, 2012 Exercise G4 (Cauchy Integral Formula)

Determine the integrals

(i)
$$\int_{C_2(i)} \frac{1}{z^2 + 4} dz$$
, (ii) $\int_{C_2(i)} \frac{1}{(z^2 + 4)^2} dz$.

Homework

Exercise H1 (A generalisation of Liouville's theorem)

Let $f : \mathbb{C} \to \mathbb{C}$ holomorphic. Further assume there are constants $a, b \in]0, \infty[$ and a natural number $n \in \mathbb{N}$ with $|f(z)| \leq a \cdot |z|^n + b$ for all $z \in \mathbb{C}$. Show that f is a polynomial with $\deg(f) \leq n$.

Exercise H2 (Power Series)

- (a) Let $f : \Omega \to \mathbb{C}$ a holomorphic function and $K_r(z_0) \subseteq \Omega$ for some r > 0. If f is unbounded on $K_r(z_0)$ then the power series expansion of f in z_0 has radius of convergence r.
- (b) Determine the radius of convergence for the power series expansion in $z_0 = 0$ of the following functions

(i)
$$f(z) = \frac{1}{z+i}$$
, (ii) $g(z) = \frac{1}{z^2+z+1}$, (iii) $g(z) = \frac{1}{\cos(z)}$

Exercise H3 (The biholomorphic maps of the open unit disk)

In this excercise we discuss the biholomorphic transformations of the open unit disk $\mathbb{D},$ i. e. the set

Aut(\mathbb{D}) := { $f : \mathbb{D} \to \mathbb{D}$, f is holomorphic, bijective and its inverse is again holomorphic}.

Obviously this set forms a subgroup of the group of all bijections of \mathbb{D} . We call an element $f \in Aut(\mathbb{D})$ an *automorphism of* \mathbb{D} .

To understand this group, we first prove Schwarz's Lemma. This will help us to determine the automorphisms which leaves the point $0 \in \mathbb{D}$ fix. Then we classify the automorphisms of \mathbb{D} .

(a) Prove Schwarz's Lemma: If $f : \mathbb{D} \to \mathbb{D}$ is holomorphic with f(0) = 0 then we have for all $z \in \mathbb{D}$ the estimation $|f(z)| \le |z|$.

Further if there exists a $z_0 \in \mathbb{D}$ with $|f(z_0)| = |z_0|$ or if |f'(0)| = 1 then $f(z) = \lambda \cdot z$ for some $\lambda \in \mathbb{T}$, i. e. f is a rotation.

Hint: Consider the function $g(z) := \frac{f(z)}{z}$ and use the maximum principle.

- (b) Show that every automorphism $f \in Aut(\mathbb{D})$ with f(0) = 0 is a rotation.
- (c) Show that every element of the set

$$J := \left\{ f(z) = \frac{az+b}{\overline{b}z+\overline{a}} \middle| a, b \in \mathbb{C} : |a|^2 - |b|^2 = 1 \right\}$$

is an automorphism of \mathbb{D} and show that *J* is a subgroup of Aut(\mathbb{D}). Further show

$$J = \left\{ f(z) = e^{i\varphi} \cdot \frac{z - \omega}{\overline{\omega} \cdot z - 1} \right| \ \omega \in \mathbb{D}, \ 0 \le \varphi < 2\pi \right\}.$$

(1 point)

(1 point)

(1 point)

- (d) Fix $\omega \in \mathbb{D}$. Find an automorphism $f \in J$ with $f(0) = \omega$.
- (e) Prove: If $H \subseteq Aut(\mathbb{D})$ is a subgroup which satisfies
 - (i) for every $z, w \in \mathbb{D}$ there is an automorphism $f \in H$ with f(z) = w (*H* acts transitively on \mathbb{D}),
 - (ii) there is a point $z \in \mathbb{D}$ such that $f \in Aut(\mathbb{D})$ with f(z) = z implies $f \in H$ (*H* contains the stabiliser of some $z \in \mathbb{D}$),

then $H = \operatorname{Aut}(\mathbb{D})$.

Conclude

Aut(
$$\mathbb{D}$$
) = $\left\{ f(z) = \frac{az+b}{\overline{b}z+\overline{a}} \middle| a, b \in \mathbb{C} : |a|^2 - |b|^2 = 1 \right\}$
 = $\left\{ f(z) = e^{i\varphi} \cdot \frac{z-\omega}{\overline{\omega} \cdot z - 1} \middle| \omega \in \mathbb{D}, \ 0 \le \varphi < 2\pi \right\}.$

(f) Show: Every $f \in Aut(\mathbb{D})$ extends to $\overline{\mathbb{D}}$ and maps \mathbb{T} bijective to \mathbb{T} .