Analysis III - Complex Analysis 6. Exercise Sheet

Department of Mathematics

WS 11/12
Prof. Dr. Burkhard Kümmerer
January 10, 2012
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (Cauchy Integral Formula)
Use the Cauchy Integral Formula to determine the following integrals:
(a) $\oint_{C_{1}(i)} \frac{1}{z-i} d z$,
(b) $\oint_{C_{1}(i)} \frac{1}{z^{2}+1} d z$,
(c) $\oint_{C_{42}(i)} \frac{1}{z^{2}+1} d z$.

Hint: To decompose the integral in (c) into elementary circle integrals use the homotopy invariance of the path integral.

Exercise G2 (Radius of convergence)
Consider a power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ which has radius of convergence $r>0$. Show: There is no holomorphic extension of f on $K_{R}(0)$ for any $R>r$.

Exercise G3 (The Cauchy transform)
Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be a continuous function. We define a function $\widehat{f}: \mathbb{D} \rightarrow \mathbb{C}$ by

$$
\widehat{f}(z):=\frac{1}{2 \pi i} \oint_{\mathbb{T}} \frac{f(\omega)}{\omega-z} d \omega .
$$

(a) Show that \widehat{f} is holomorphic.
(b) Show: If $f: \Omega \rightarrow \mathbb{C}$ with $\overline{\mathbb{D}} \subseteq \Omega$ is holomorphic then $\widehat{f}=f$.
(c) Is it always true that $\lim _{z \rightarrow \omega, z \in \mathbb{D}} \widehat{f}(z)=f(\omega)$ holds for $\omega \in \mathbb{T}$?

The function \widehat{f} is called the Cauchy transform of f.

Homework

Exercise H1 (Conjugation with reflections)
Let $L \subseteq \mathbb{C}$ a one dimensional real subspace of \mathbb{C}. Further let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ the real linear map with $\sigma(l)=l$ for all $l \in L$ and $\sigma\left(l^{\perp}\right)=-l^{\perp}$ for all $l \in L^{\perp}$ where L^{\perp} is the orthogonal complement of L with resprect to the canonical scalar product on \mathbb{R}^{2}. Of course this means that σ is orthogonal with determinant -1 .
(a) Let $\Omega \subseteq \mathbb{C}$ be a domain and $f: \Omega \rightarrow \mathbb{C}$ a function. Show that the following statements are equivalent:
(i) $f: \Omega \rightarrow \mathbb{C}$ is holomorphic.
(ii) $\sigma \circ f \circ \sigma: \sigma(\Omega) \rightarrow \mathbb{C}$ is holomorphic.

Now let $\Omega \subseteq \mathbb{C}$ be a domain which is symmetric a to the real axis, i. e. $\Omega=\{\bar{z}: z \in \Omega\}$. We define $f^{*}(z):=\overline{f(\bar{z})}$. From (a) it follows that f^{*} is holomorphic if and only if f is holomorphic.
(b) Determine the derivative of f^{*} directly.
(c) Assume $f(z)=\sum_{k=0}^{\infty} a_{k} \cdot z^{k}$ converges on Ω. Determine the power series of f^{*}. Which holomorphic functions of this form satisfy $f=f^{*}$?
(d) Show that every holomorphic function on Ω is linear combination of two holomorphic functions g, h on Ω with $g=g^{*}$ and $h=h^{*}$.
Hint: To get an idea you could first prove (d) for holomorphic functions given by a power series like in (c).

Exercise H2 (The mean value property)
Let $\Omega \subseteq \mathbb{C}$ a simply connected domain.
(a) Show that the following statements are equivalent for a function $u: \Omega \rightarrow \mathbb{R}$:
(i) $\Delta u(z)=0$ for each $z \in \Omega$ where Δ is the Laplacian if we identify Ω as a subset of \mathbb{R}^{2}.
(ii) There is a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ with $u(z)=\operatorname{Re}(f(z))$.

We call a function u satisfiing (i) harmonic on Ω.
(b) Show the mean value property for harmonic functions: If $u: \Omega \rightarrow \mathbb{R}$ is harmonic and $\overline{K_{r}\left(z_{0}\right)} \subseteq \Omega$ holds, then

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r \cdot e^{i t}\right) d t
$$

Now let $\Omega \subseteq \mathbb{C}$ be an arbitrary domain.
(c) Let $u: \Omega \rightarrow \mathbb{R}$ be a harmonic function. Since Ω need not to be simply connected, we can't conclude that u is the real part of a holomorphic function. Why does u satisfy the mean value property anyway?

Exercise H3 (Real integrals and complex path integrals)
In this exercise we want to calculate the integral:

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x
$$

We will see that the complex line integral could be a mighty help for real integration.
(a) Calculate the roots of the polynomial $p(z)=z^{4}+1$. Sketch them into the unit circle and decide which of them lie in the upper half plane $H:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
(b) Show that the real integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x
$$

exists and is finite.
(c) Let $r \in] 1, \infty[$ an arbitrary number. Consider the paths

$$
\begin{array}{ll}
\gamma_{r}^{(1)}:[0,1] \rightarrow \mathbb{C}, & \gamma_{r}^{(1)}(t):=r(2 t-1) \\
\gamma_{r}^{(2)}:[0,1] \rightarrow \mathbb{C}, & \gamma_{r}^{(2)}(t):=r \cdot e^{i \pi t}
\end{array}
$$

and set $\gamma_{r}:=\gamma_{r}^{(1)}+\gamma_{r}^{(2)}$. Assure yourself that γ_{r} is a loop in \mathbb{C}. Sketch the path γ_{r} for a suitable choice of $r>1$ and argue that

$$
\int_{\gamma_{r}} \frac{z^{2}}{z^{4}+1} d z
$$

is independent of the choosen $r \in] 1, \infty[$.
(d) Use the standard estimation to show

$$
\lim _{r \rightarrow \infty} \int_{\gamma_{r}^{(2)}} \frac{z^{2}}{z^{4}+1} d z=0 . \quad \text { Conclude: } \quad \int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x=\int_{\gamma_{r}} \frac{z^{2}}{z^{4}+1} d z
$$

for any $r>1$.
(e) Use the Cauchy Integral Formular and the factorisation of $z^{4}+1$ into linear factors to show

$$
\begin{aligned}
& \frac{1}{2 \pi i} \cdot \oint_{C_{1}\left(\xi_{1}\right)} \frac{z^{2}}{z^{4}+1} d z=\frac{\xi_{1}^{2}}{\left(\xi_{1}-\xi_{2}\right)\left(\xi_{1}-\xi_{3}\right)\left(\xi_{1}-\xi_{4}\right)} \\
& \frac{1}{2 \pi i} \cdot \oint_{C_{1}\left(\xi_{2}\right)} \frac{z^{2}}{z^{4}+1} d z=\frac{\xi_{2}^{2}}{\left(\xi_{2}-\xi_{1}\right)\left(\xi_{2}-\xi_{3}\right)\left(\xi_{2}-\xi_{4}\right)}
\end{aligned}
$$

where $\xi_{k}=e^{\frac{\pi i(2 k+1)}{4}}$ are the roots of $z^{4}+1$.
(f) Argue

$$
\int_{\gamma_{r}} \frac{z^{2}}{z^{4}+1} d z=\oint_{C_{1}\left(\xi_{1}\right)} \frac{z^{2}}{z^{4}+1} d z+\oint_{C_{1}\left(\xi_{2}\right)} \frac{z^{2}}{z^{4}+1} d z
$$

for any $r>1$. Finally determine this integral.

