Analysis III – Complex Analysis 5. Exercise Sheet

Department of Mathematics Prof. Dr. Burkhard Kümmerer Andreas Gärtner Walter Reußwig

Groupwork

Exercise G1 (Standard estimations)

(a) Consider a continuous function $f : [0, 1] \rightarrow \mathbb{C}$. Show

$$\left|\int_0^1 f(t)dt\right| \leq \int_0^1 \left|f(t)\right|dt.$$

Hint: For each complex number $z \in \mathbb{C}$ there is a complex number $\omega \in \mathbb{C}$ such that $\omega \cdot z = |z|$.

(b) Let $\Omega \subseteq \mathbb{C}$ be a domain and $f : \Omega \to \mathbb{C}$ be a continuous function. Further let $\gamma : [0,1] \to \Omega$ be an arbitrary path. Show the standard estimation for the complex path integral:

$$\left| \int_{\gamma} f(z) dz \right| \leq \sup_{t \in [0,1]} \{ |f(\gamma(t))| \} \cdot L(\gamma) < \infty.$$

Exercise G2 (Locally uniform convergence)

Let $\Omega \subseteq \mathbb{C}$ be a domain. If $f : \Omega \to \mathbb{C}$ is an arbitrary function then we denote by f^K for $K \subseteq \Omega$ the restriction of f on K, i. e. $f^K : K \to \mathbb{C}$, $f^K(z) := f(z)$.

Let $f_n : \Omega \to \mathbb{C}$ be a function for each $n \in \mathbb{N}$. We say the sequence $(f_n)_{n \in \mathbb{N}}$ converges **locally uniformly** to a function $f : \Omega \to \mathbb{C}$ if for each compact subset $K \subseteq \Omega$ the sequence $(f_n^K)_{n \in \mathbb{N}}$ converges uniformly to f^K .

- (a) Show: If $(f_n)_{n \in \mathbb{N}}$ converges locally uniformly to *f* then it converges pointwise to *f*.
- (b) Show: If $(f_n)_{n \in \mathbb{N}}$ converges locally uniformly to f and if the function f_n is continuous for each $n \in \mathbb{N}$ then f is continuous.
- (c) Give an example of a locally uniformly convergent sequence which is not uniformly convergent.
- (d) Show: If $(f_n)_{n \in \mathbb{N}}$ converges locally uniformly to f then for every path $\gamma : [0, 1] \to \Omega$ we have

$$\lim_{n\to\infty}\int_{\gamma}f_n(z)dz=\int_{\gamma}f(z)dz.$$

WS 11/12 Dezember 13, 2011 (e) Consider the domain $\Omega := \mathbb{C} \setminus \{0\}$ and the following rational functions:

$$f_n(z) := \sum_{k=0}^n \frac{1}{k!} \cdot \frac{1}{z^k}$$

Show that the sequence $(f_n)_{n \in \mathbb{N}}$ converges locally uniformly to $f(z) = e^{\frac{1}{z}}$ and determine the path integral $\oint_{K_1(0)} e^{\frac{1}{z}} dz$.

Exercise G3 (Radius of convergence)

Let $(a_n)_{n \in \mathbb{N}}$ be a monotonically decreasing null sequence and define the power series

$$f(z):=\sum_{n=0}^{\infty}a_nz^n$$

(a) Show that the radius of convergence of f is at least 1.

(b) Show that for each $z \in \mathbb{T} \setminus \{1\} = \{z \in \mathbb{C} \setminus \{1\} : |z| = 1\}$ the series converges. **Hint:** Use $\sum_{k=m}^{n} a_k z^k = \frac{1}{1-z} \cdot ((1-z) \cdot \sum_{k=m}^{n} a_k z^k)$ and estimate the second term.

Homework

Exercise H1 (Real parts of complex differentiable functions)

Consider the polynomial $p(x, y) := x^2 + 2axy + by^2$ where $a, b \in \mathbb{R}$ are parameters. Decide for which choices $a, b \in \mathbb{R}$ the polynomial is the real part of a complex differentiable function $f : \mathbb{C} \to \mathbb{C}$, i. e.

$$p(x, y) = \operatorname{Re}f(x + iy).$$

On the other side if p(x, y) = Ref(x + iy) = Reg(x + iy) for complex differentiable functions $f, g : \mathbb{C} \to \mathbb{C}$ what can you say about the relationship of f and g?

Exercise H2 (The Gamma function)

(1 point)

(1 point)

There are many connections between number theory and complex analysis. In this excercise we construct a complex differentiable function $\Gamma : \Omega \to \mathbb{C}$ which interpolates the factorials. We use the following result:

Theorem: Let $\Omega \subseteq \mathbb{C}$ be a domain and let $f : \Omega \times]0, \infty[\to \mathbb{C}$ a function satisfying the following three conditions:

- (i) For every $z \in \Omega$ one has $\int_0^\infty |f(z, t)| dt < \infty$.
- (ii) For every $t \in]0, \infty[$ the function $z \to f(z, t)$ is complex differentiable.
- (iii) For every compact disk $K = K_r(z_0) \subseteq \Omega$ there is a positive function $g_K :]0, \infty[\rightarrow \mathbb{R}_0^+$ with $|f(z, t)| \leq g_K(t)$ for all $t \in]0, \infty[$ and all $z \in K$ and one has

$$\int_0^\infty g_K(t)dt < \infty.$$

Then the function $F : \Omega \to \mathbb{C}$,

$$F(z) := \int_0^\infty f(z,t)dt$$

is complex differentiable and its derivatives are given by

$$F^{(n)}(z) = \int_0^\infty \frac{\partial^n}{\partial z^n} f(z,t) dt.$$

Now we use the domain $\Omega_+ := \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ which is the open right half complex plane.

- (a) Show that the following statements are equivalent for $\Omega = \Omega_+$:
 - (iii) For every compact disk $K = K_r(z_0) \subseteq \Omega_+$ there is a positive function $g_K :]0, \infty[\to \mathbb{R}_0^+$ with $|f(z, t)| \leq g_K(t)$ for all $t \in]0, \infty[$ and all $z \in K$ and one has

$$\int_0^\infty g_K(t)dt < \infty.$$

(iii') For every compact rectangular $K = [a, b] \times i \cdot [c, d] \subseteq \Omega_+$ there is a positive function $g_K :]0, \infty[\rightarrow \mathbb{R}^+_0$ with $|f(z, t)| \leq g_K(t)$ for all $t \in]0, \infty[$ and all $z \in K$ and one has

$$\int_0^\infty g_K(t)dt < \infty.$$

(b) Show that

$$\Gamma_{+}(z) := \int_{0}^{\infty} t^{(z-1)} \cdot e^{-t} dt := \int_{0}^{\infty} e^{\ln(t) \cdot (z-1)} \cdot e^{-t} dt$$

defines a complex differentiable function on Ω_+ .

(c) Show the following formulas:

$$\Gamma_{+}(1) = 1,$$

$$\Gamma_{+}(z+1) = z \cdot \Gamma_{+}(z) \text{ for all } z \in \Omega_{+}.$$

Conclude $\Gamma_+(n+1) = n!$ which means the function Γ_+ is indeed a complex differentiable interpolation of the factorials on the right complex half plane.

- (d) Show that the function Γ_+ is bounded on the strip $S := \{z \in \mathbb{C} : 1 \le \text{Re}(z) \le 2\}$.
- (e) Define $\Omega_0 := \Omega_+$ and $\Omega_{n+1} := \{z \in \mathbb{C} : \operatorname{Re}(z) > -n\} \setminus \{k \in \mathbb{Z} : k \leq 0\}$. Further define

$$\begin{split} f_0:\Omega_0\to\mathbb{C}, \quad f_0(z) &:= \quad \Gamma_+(z), \\ f_{n+1}:\Omega_{n+1}\to\mathbb{C}, \quad f_{n+1}(z) &:= \quad \frac{f_n(z+1)}{z}. \end{split}$$

Show: For all $n \in \mathbb{N}$ the function f_n is complex differentiable and agrees on Ω_k with f_k for all $k \leq n$. Thus there is a complex differentiable function $\Gamma : \Omega := \mathbb{C} \setminus \{k \in \mathbb{Z} : k \leq 0\} \to \mathbb{C}$ with $\Gamma(z) = f_n(z)$ for every $n \in \mathbb{N}$ and all $z \in \Omega_n$.

(f) Show: For each $n \in \mathbb{N}$ one has $\lim_{(z \to -n)} (z+n)\Gamma(z) = \frac{(-1)^n}{n!}$.

For completeness: The Theorem of H. Wieland states the following: Let $\Omega \subseteq \mathbb{C}$ be a domain such that Ω contains the vertical strip *S*. Then for any function $f : \Omega \to \mathbb{C}$ with

- (1) The function f is bounded on S,
- (2) The function f satisfies $f(z+1) = z \cdot f(z)$ for all $z \in \Omega$,

one has $f(z) = f(1) \cdot \Gamma(z)$ for all $z \in \Omega$, i. e. the conditions (1) and (2) characterise the Γ -function up to a multiplicative constant.