Analysis III - Complex Analysis 5. Exercise Sheet

Department of Mathematics

WS 11/12
Prof. Dr. Burkhard Kümmerer
Dezember 13, 2011
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (Standard estimations)
(a) Consider a continuous function $f:[0,1] \rightarrow \mathbb{C}$. Show

$$
\left|\int_{0}^{1} f(t) d t\right| \leq \int_{0}^{1}|f(t)| d t
$$

Hint: For each complex number $z \in \mathbb{C}$ there is a complex number $\omega \in \mathbb{C}$ such that $\omega \cdot z=|z|$.
(b) Let $\Omega \subseteq \mathbb{C}$ be a domain and $f: \Omega \rightarrow \mathbb{C}$ be a continuous function. Further let $\gamma:[0,1] \rightarrow \Omega$ be an arbitrary path. Show the standard estimation for the complex path integral:

$$
\left|\int_{\gamma} f(z) d z\right| \leq \sup _{t \in[0,1]}\{|f(\gamma(t))|\} \cdot L(\gamma)<\infty .
$$

Exercise G2 (Locally uniform convergence)
Let $\Omega \subseteq \mathbb{C}$ be a domain. If $f: \Omega \rightarrow \mathbb{C}$ is an arbitrary function then we denote by f^{K} for $K \subseteq \Omega$ the restriction of f on K, i. e. $f^{K}: K \rightarrow \mathbb{C}, f^{K}(z):=f(z)$.
Let $f_{n}: \Omega \rightarrow \mathbb{C}$ be a function for each $n \in \mathbb{N}$. We say the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to a function $f: \Omega \rightarrow \mathbb{C}$ if for each compact subset $K \subseteq \Omega$ the sequence $\left(f_{n}^{K}\right)_{n \in \mathbb{N}}$ converges uniformly to f^{K}.
(a) Show: If $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to f then it converges pointwise to f.
(b) Show: If $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to f and if the function f_{n} is continuous for each $n \in \mathbb{N}$ then f is continuous.
(c) Give an example of a locally uniformly convergent sequence which is not uniformly convergent.
(d) Show: If $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to f then for every path $\gamma:[0,1] \rightarrow \Omega$ we have

$$
\lim _{n \rightarrow \infty} \int_{\gamma} f_{n}(z) d z=\int_{\gamma} f(z) d z
$$

(e) Consider the domain $\Omega:=\mathbb{C} \backslash\{0\}$ and the following rational functions:

$$
f_{n}(z):=\sum_{k=0}^{n} \frac{1}{k!} \cdot \frac{1}{z^{k}} .
$$

Show that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to $f(z)=e^{\frac{1}{z}}$ and determine the path integral $\oint_{K_{1}(0)} e^{\frac{1}{z}} d z$.

Exercise G3 (Radius of convergence)
Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a monotonically decreasing null sequence and define the power series

$$
f(z):=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

(a) Show that the radius of convergence of f is at least 1 .
(b) Show that for each $z \in \mathbb{T} \backslash\{1\}=\{z \in \mathbb{C} \backslash\{1\}:|z|=1\}$ the series converges.

Hint: Use $\sum_{k=m}^{n} a_{k} z^{k}=\frac{1}{1-z} \cdot\left((1-z) \cdot \sum_{k=m}^{n} a_{k} z^{k}\right)$ and estimate the second term.

Homework

Exercise H1 (Real parts of complex differentiable functions)
Consider the polynomial $p(x, y):=x^{2}+2 a x y+b y^{2}$ where $a, b \in \mathbb{R}$ are parameters. Decide for which choices $a, b \in \mathbb{R}$ the polynomial is the real part of a complex differentiable function $f: \mathbb{C} \rightarrow \mathbb{C}$, i. e.

$$
p(x, y)=\operatorname{Re} f(x+i y)
$$

On the other side if $p(x, y)=\operatorname{Re} f(x+i y)=\operatorname{Re} g(x+i y)$ for complex differentiable functions $f, g: \mathbb{C} \rightarrow \mathbb{C}$ what can you say about the relationship of f and g ?

Exercise H2 (The Gamma function)
There are many connections between number theory and complex analysis. In this excercise we construct a complex differentiable function $\Gamma: \Omega \rightarrow \mathbb{C}$ which interpolates the factorials. We use the following result:
Theorem: Let $\Omega \subseteq \mathbb{C}$ be a domain and let $f: \Omega \times] 0, \infty[\rightarrow \mathbb{C}$ a function satisfying the following three conditions:
(i) For every $z \in \Omega$ one has $\int_{0}^{\infty}|f(z, t)| d t<\infty$.
(ii) For every $t \in] 0, \infty$ [the function $z \rightarrow f(z, t)$ is complex differentiable.
(iii) For every compact disk $K=K_{r}\left(z_{0}\right) \subseteq \Omega$ there is a positive function $\left.g_{K}:\right] 0, \infty\left[\rightarrow \mathbb{R}_{0}^{+}\right.$with $|f(z, t)| \leq g_{K}(t)$ for all $\left.t \in\right] 0, \infty[$ and all $z \in K$ and one has

$$
\int_{0}^{\infty} g_{K}(t) d t<\infty
$$

Then the function $F: \Omega \rightarrow \mathbb{C}$,

$$
F(z):=\int_{0}^{\infty} f(z, t) d t
$$

is complex differentiable and its derivatives are given by

$$
F^{(n)}(z)=\int_{0}^{\infty} \frac{\partial^{n}}{\partial z^{n}} f(z, t) d t
$$

Now we use the domain $\Omega_{+}:=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$ which is the open right half complex plane.
(a) Show that the following statements are equivalent for $\Omega=\Omega_{+}$:
(iii) For every compact disk $K=K_{r}\left(z_{0}\right) \subseteq \Omega_{+}$there is a positive function $\left.g_{K}:\right] 0, \infty\left[\rightarrow \mathbb{R}_{0}^{+}\right.$ with $|f(z, t)| \leq g_{K}(t)$ for all $\left.t \in\right] 0, \infty[$ and all $z \in K$ and one has

$$
\int_{0}^{\infty} g_{K}(t) d t<\infty
$$

(iii') For every compact rectangular $K=[a, b] \times i \cdot[c, d] \subseteq \Omega_{+}$there is a positive function $\left.g_{K}:\right] 0, \infty\left[\rightarrow \mathbb{R}_{0}^{+}\right.$with $|f(z, t)| \leq g_{K}(t)$ for all $\left.t \in\right] 0, \infty[$ and all $z \in K$ and one has

$$
\int_{0}^{\infty} g_{K}(t) d t<\infty
$$

(b) Show that

$$
\Gamma_{+}(z):=\int_{0}^{\infty} t^{(z-1)} \cdot e^{-t} d t:=\int_{0}^{\infty} e^{\ln (t) \cdot(z-1)} \cdot e^{-t} d t
$$

defines a complex differentiable function on Ω_{+}.
(c) Show the following formulas:

$$
\begin{aligned}
\Gamma_{+}(1) & =1, \\
\Gamma_{+}(z+1) & =z \cdot \Gamma_{+}(z) \quad \text { for all } z \in \Omega_{+} .
\end{aligned}
$$

Conclude $\Gamma_{+}(n+1)=n$! which means the function Γ_{+}is indeed a complex differentiable interpolation of the factorials on the right complex half plane.
(d) Show that the function Γ_{+}is bounded on the strip $S:=\{z \in \mathbb{C}: 1 \leq \operatorname{Re}(z) \leq 2\}$.
(e) Define $\Omega_{0}:=\Omega_{+}$and $\Omega_{n+1}:=\{z \in \mathbb{C}: \operatorname{Re}(z)>-n\} \backslash\{k \in \mathbb{Z}: k \leq 0\}$. Further define

$$
\begin{aligned}
f_{0}: \Omega_{0} \rightarrow \mathbb{C}, \quad f_{0}(z) & :=\Gamma_{+}(z), \\
f_{n+1}: \Omega_{n+1} \rightarrow \mathbb{C}, \quad f_{n+1}(z) & :=\frac{f_{n}(z+1)}{z} .
\end{aligned}
$$

Show: For all $n \in \mathbb{N}$ the function f_{n} is complex differentiable and agrees on Ω_{k} with f_{k} for all $k \leq n$. Thus there is a complex differentiable function $\Gamma: \Omega:=\mathbb{C} \backslash\{k \in \mathbb{Z}: k \leq 0\} \rightarrow \mathbb{C}$ with $\Gamma(z)=f_{n}(z)$ for every $n \in \mathbb{N}$ and all $z \in \Omega_{n}$.
(f) Show: For each $n \in \mathbb{N}$ one has $\lim _{(z \rightarrow-n)}(z+n) \Gamma(z)=\frac{(-1)^{n}}{n!}$.

For completeness: The Theorem of H . Wieland states the following: Let $\Omega \subseteq \mathbb{C}$ be a domain such that Ω contains the vertical strip S. Then for any function $f: \Omega \rightarrow \mathbb{C}$ with
(1) The function f is bounded on S,
(2) The function f satisfies $f(z+1)=z \cdot f(z)$ for all $z \in \Omega$,
one has $f(z)=f(1) \cdot \Gamma(z)$ for all $z \in \Omega$, i. e. the conditions (1) and (2) characterise the Γ-function up to a multiplicative constant.

