Analysis III - Complex Analysis
 3. Exercise Sheet

TECHNISCHE
UNIVERSITAT
DARMSTADT

Prof. Dr. Burkhard Kümmerer
November 15, 2011
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (The standard estimation)
Let $f: \mathbb{R}^{n} \supseteq \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field and $\gamma:[0,1] \rightarrow \Omega$ a piecewise continuously differentiable path. Show the following estimation:

$$
\left|\int_{\gamma} f d s\right| \leq \max \left\{\|f(\gamma(t))\|_{2}: 0 \leq t \leq 1\right\} \cdot L(\gamma),
$$

where $L(\gamma)$ denotes the legth of γ.
Exercise G2 (Winding around the origin)
Consider the vector field

$$
f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2}, \quad f\binom{x}{y}:=\frac{1}{x^{2}+y^{2}}\binom{-y}{x}
$$

and the two star shaped domains $G_{1}:=\mathbb{R}^{2} \backslash\{(x, 0): x \leq 0\}$ and $G_{2}:=\mathbb{R}^{2} \backslash\{(x, 0): x \geq 0\}$.
(a) Show that f has a potential on G_{1} and a potential on G_{2} and determine them.

Hint: Use the polar decomposition: $\gamma(t)=r(t) \cdot\binom{\cos (\varphi(t))}{\sin (\varphi(t))}$.
(b) Is there a global potential for f on $\mathbb{R}^{2} \backslash\{0\}$?
(c) Consider paths of the following form:

Show for the (improper) path integral that $\int_{\gamma} f d s=\alpha$, where $\alpha \in[0,2 \pi[$ is the included angle of the path.
(d) Determine the path integral for the following counterclockwise parametrised curves:

The number $\frac{1}{2 \pi} \int_{\gamma} f d s$ is called the winding number of γ in 0 for a loop γ. Why?
Exercise G3 (Path integrals and potentials)
In the lectures we will see that a vector field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has a potential if and only if its Jacobian $J_{f}(x)$ is symmetric for all $x \in \mathbb{R}^{n}$.
Decide whether the following vector fields have a potential. Determine the potential if it exists.

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f(x, y) \quad:=\left(2 x y^{3}+\cos (x), 3 x^{2} y^{2}+\cos (y)\right)^{T}, \\
& g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \\
& h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},
\end{aligned} \quad h(x, y, z):=(1+y(1+x), x(1+z), x y)^{T},=\left(y \cdot e^{x y}, x \cdot e^{x y}+1\right)^{T} .
$$

Homework

Exercise H1 (Equivalence of paths)

(a) Show that the equivalence of paths is an equivalence relation.
(b) Let $f: \mathbb{R}^{n} \supseteq \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field. Prove that for equivalent paths $\gamma_{1}:[a, b] \rightarrow \Omega$ and $\gamma_{2}:[c, d] \rightarrow \Omega$ one has $\int_{\gamma_{1}} f d s=\int_{\gamma_{2}} f d s$.

Exercise H2 (Connectedness and pathwise connectedness)
(a) Let $\Omega \subseteq \mathbb{R}^{n}$ be open and fix a point $x \in \Omega$. Consider the set $G_{x}:=\{y \in \Omega$: there is a continuous curve $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=x$ and $\gamma(1)=y\}$. Show that G_{x} is open and closed in Ω, i. e. open and closed in the metric space $\left(\Omega,\|\cdot\|_{2}\right)$.
(b) Let $\Omega \subseteq \mathbb{R}^{n}$ be open. Prove that Ω is connected if and only if Ω is pathwise connected.
(c) Let $\Omega \subseteq \mathbb{R}^{n}$ be a domain. Show that for every $x, y \in \Omega$ there is a piecewise linear path $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=x$ and $\gamma(1)=y$.

Exercise H3 (Potentials)

(a) Let $\Omega \subseteq \mathbb{R}^{n}$ be a domain and $f: \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field. Assume $F_{1}: \Omega \rightarrow \mathbb{R}$ and $F_{2}: \Omega \rightarrow \mathbb{R}$ are potentials for f. Show that $F_{1}-F_{2}$ is a constant function.
(b) Let Ω be an arbitrary nonempty open subset of \mathbb{R}^{n} and $f: \Omega \rightarrow \mathbb{R}^{n}$ be a continuous vector field. Assume $F_{1}: \Omega \rightarrow \mathbb{R}$ and $F_{2}: \Omega \rightarrow \mathbb{R}$ are potentials for f. What can you say about the difference function $F_{1}-F_{2}$?

