Analysis III – Complex Analysis 3. Exercise Sheet

Department of Mathematics Prof. Dr. Burkhard Kümmerer

WS 11/12 November 15, 2011

Andreas Gärtner Walter Reußwig

Groupwork

Exercise G1 (The standard estimation)

Let $f: \mathbb{R}^n \supseteq \Omega \to \mathbb{R}^n$ be a continuous vector field and $\gamma: [0,1] \to \Omega$ a piecewise continuously differentiable path. Show the following estimation:

$$\left| \int_{\gamma} f \, ds \right| \leq \max \left\{ \left\| f(\gamma(t)) \right\|_{2} : 0 \leq t \leq 1 \right\} \cdot L(\gamma),$$

where $L(\gamma)$ denotes the legth of γ .

Exercise G2 (Winding around the origin)

Consider the vector field

$$f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2, \quad f\begin{pmatrix} x \\ y \end{pmatrix} := \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \end{pmatrix}$$

and the two star shaped domains $G_1 := \mathbb{R}^2 \setminus \{(x,0) : x \leq 0\}$ and $G_2 := \mathbb{R}^2 \setminus \{(x,0) : x \geq 0\}$.

(a) Show that f has a potential on G_1 and a potential on G_2 and determine them. **Hint:** Use the polar decomposition: $\gamma(t) = r(t) \cdot \begin{pmatrix} \cos(\varphi(t)) \\ \sin(\varphi(t)) \end{pmatrix}$.

- (b) Is there a global potential for f on $\mathbb{R}^2 \setminus \{0\}$?
- (c) Consider paths of the following form:

Show for the (improper) path integral that $\int_{\gamma} f ds = \alpha$, where $\alpha \in [0, 2\pi[$ is the included angle of the path.

(d) Determine the path integral for the following counterclockwise parametrised curves:

The number $\frac{1}{2\pi}\int_{\gamma}f\,ds$ is called the *winding number* of γ in 0 for a loop γ . Why?

Exercise G3 (Path integrals and potentials)

In the lectures we will see that a vector field $f: \mathbb{R}^n \to \mathbb{R}^n$ has a potential if and only if its Jacobian $J_f(x)$ is symmetric for all $x \in \mathbb{R}^n$.

Decide whether the following vector fields have a potential. Determine the potential if it exists.

$$f: \mathbb{R}^2 \to \mathbb{R}^2,$$
 $f(x,y) := (2xy^3 + \cos(x), 3x^2y^2 + \cos(y))^T,$
 $g: \mathbb{R}^3 \to \mathbb{R}^3,$ $g(x,y,z) := (1+y(1+x), x(1+z), xy)^T,$
 $h: \mathbb{R}^2 \to \mathbb{R}^2,$ $h(x,y) := (y \cdot e^{xy}, x \cdot e^{xy} + 1)^T.$

Homework

Exercise H1 (Equivalence of paths)

(1 point)

- (a) Show that the equivalence of paths is an equivalence relation.
- (b) Let $f : \mathbb{R}^n \supseteq \Omega \to \mathbb{R}^n$ be a continuous vector field. Prove that for equivalent paths $\gamma_1 : [a, b] \to \Omega$ and $\gamma_2 : [c, d] \to \Omega$ one has $\int_{\gamma_1} f \, ds = \int_{\gamma_2} f \, ds$.

Exercise H2 (Connectedness and pathwise connectedness)

(1 point)

- (a) Let $\Omega \subseteq \mathbb{R}^n$ be open and fix a point $x \in \Omega$. Consider the set $G_x := \{y \in \Omega : \text{there is a continuous curve } \gamma : [0,1] \to \Omega \text{ with } \gamma(0) = x \text{ and } \gamma(1) = y\}$. Show that G_x is open and closed in Ω , i. e. open and closed in the metric space $(\Omega, \|\cdot\|_2)$.
- (b) Let $\Omega \subseteq \mathbb{R}^n$ be open. Prove that Ω is connected if and only if Ω is pathwise connected.
- (c) Let $\Omega \subseteq \mathbb{R}^n$ be a domain. Show that for every $x, y \in \Omega$ there is a piecewise linear path $\gamma : [0,1] \to \Omega$ with $\gamma(0) = x$ and $\gamma(1) = y$.

Exercise H3 (Potentials)

(1 point)

- (a) Let $\Omega \subseteq \mathbb{R}^n$ be a domain and $f: \Omega \to \mathbb{R}^n$ be a continuous vector field. Assume $F_1: \Omega \to \mathbb{R}$ and $F_2: \Omega \to \mathbb{R}$ are potentials for f. Show that $F_1 F_2$ is a constant function.
- (b) Let Ω be an arbitrary nonempty open subset of \mathbb{R}^n and $f:\Omega\to\mathbb{R}^n$ be a continuous vector field. Assume $F_1:\Omega\to\mathbb{R}$ and $F_2:\Omega\to\mathbb{R}$ are potentials for f. What can you say about the difference function F_1-F_2 ?