Analysis III - Complex Analysis
 2. Exercise Sheet

Department of Mathematics

WS 11/12
Prof. Dr. Burkhard Kümmerer
November 1, 2011

Groupwork

Exercise G1 (Cauchy-Riemann differential equations I)

Consider the function $f(z):=e^{z}$. Use the Cauchy-Riemann differential equations to prove that f is differentiable on the whole complex plane.

Exercise G2 (Cauchy-Riemann differential equations II)
Consider the function $f(x+y \cdot i):=x^{3} \cdot y^{2}+x^{2} \cdot y^{3} \cdot i$ defined on the whole complex plane.
Determine the subset $\Omega \subseteq \mathbb{C}$ on which f has a complex derivative. Is there an inner point $z_{0} \in \Omega$?

Exercise G3 (Path integrals)
Consider the vector field

$$
\mathbb{R}^{2} \ni(x, y) \rightarrow F(x, y):=\frac{1}{\left(x^{2}+y^{2}+1\right)^{2}}\binom{-x^{2}+y^{2}+1}{-2 x y} \in \mathbb{R}^{2}
$$

Determine $\int_{\gamma_{1}} F d s$ and $\int_{\gamma_{2}} F d s$ for the paths $\gamma_{1}:[-1,1] \rightarrow \mathbb{R}^{2}$ and $\gamma_{2}:[0, \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
\gamma_{1}(t):=\binom{-t}{0} \quad \text { and } \quad \gamma_{2}(t):=\binom{\cos (t)}{\sin (t)}
$$

Exercise G4 (Elementary properties of the path integral)
Let $F, G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable vector fields. Further let $\gamma, \gamma_{1}:[a, b] \rightarrow \mathbb{R}^{n}$ and $\gamma_{2}:[b, c] \rightarrow \mathbb{R}^{n}$ be continuously differentiable paths. Show that the path integral has the following properties:
(a) $\int_{\gamma} \lambda F+\mu G d s=\lambda \int_{\gamma} F d s+\mu \int_{\gamma} G d s$.
(b) $\int_{\gamma_{1}+\gamma_{2}} F d s=\int_{\gamma_{1}} F d s+\int_{\gamma_{2}} F d s$.
(c) If $\varphi:[\alpha, \beta] \rightarrow[a, b]$ is a diffeomorphism with $\varphi^{\prime}(t)>0$ then $\int_{\gamma} F d s=\int_{\gamma \circ \varphi} F d s$.

Interprete part (c) in the special case of a "vector field" $F: \mathbb{R} \supseteq[a, b] \rightarrow \mathbb{R}$ and the path $\gamma:[a, b] \rightarrow \mathbb{R}, \gamma(t)=t$.

Exercise G5 (Rotation of a vector field and a two dimensional version of Stoke's theorem)
Let $\Omega \subseteq \mathbb{R}^{2}$ be an open subset and $f: \mathbb{R}^{2} \supseteq \Omega \rightarrow \mathbb{R}^{2}$ be a continuously differentiable vector field. Further let $v \in \Omega$ be an arbitrary point and $\varepsilon>0$. Assume that the closed square with side length ε and center v is contained in Ω and let γ be the canonical parametrisation of the boundary of this square, i. e. it is counterclockwisely orientated.
(a) Prove that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \int_{\gamma} f d s=\operatorname{rot}(f)(v)
$$

where $\operatorname{rot}(f)(x, y):=\frac{\partial f_{2}}{\partial x}(x, y)-\frac{\partial f_{1}}{\partial y}(x, y)$ defines the rotation of f.
(b) Prove Stoke's theorem in the two dimensional case:

Let $f: \mathbb{R}^{2} \supseteq \Omega \rightarrow \mathbb{R}^{2}$ be a continuously differentiable vector field and $R:=[a, b] \times[c, d]$ be a rectangle with $R \subseteq \Omega$. If γ is the canonical parametrisation of the boundary of R then the following equation holds:

$$
\int_{\gamma} f d s=\int_{c}^{d} \int_{a}^{b} \operatorname{rot}(f)(x, y) d x d y
$$

Hint: Use Fubini's theorem.

Homework

Exercise H1 (Connectedness and path-connectedness)
Let (X, d) a metric space. The space X is called connected, if the only subsets of X which are both open and closed are X and the empty set.
(a) Prove that the following conditions are equivalent:
(i) The space X is connected.
(ii) If $X=A \cup B$ for open sets A and B with $A \cap B=\emptyset$, then $A=\emptyset$ or $B=\emptyset$.
(iii) If $X=A \cup B$ for closed sets A and B with $A \cap B=\emptyset$, then $A=\emptyset$ or $B=\emptyset$.
(iv) Every continuous function $f: X \rightarrow\{0,1\}$ is constant.
(b) Is there a metric on \mathbb{R} such that (\mathbb{R}, d) is disconnected, i. e. not connected? Prove your claim.
(c) Show that every path connected metric space is connected.
(d) Let

$$
\Gamma:=\left\{\left(x, \sin \left(\frac{1}{x}\right)\right)^{T}: 0<x \leq 1\right\} \subseteq \mathbb{R}^{2} .
$$

Define $X:=\bar{\Gamma}$ where the closure is taken in the natural metric. Then (X, d) is a metric space with $d(x, y):=\|x-y\|_{2}$. Sketch the set X and show that X is connected but not path connected.

Exercise H2 (Curves, path length and rectifiability I)
We first introduce some notation. A partition Z of $[0,1]$ is given by a finite ordered subset $Z=\left\{t_{0}, \ldots, t_{n}\right\}$ with $0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=1$. For simplicity we write $Z=\left\{t_{0}, \ldots, t_{n}\right\}$.
Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a continuously differentiable path and Z a Partition of $[0,1]$. We define piecewise a new path $\gamma_{Z}:[0,1] \rightarrow \mathbb{R}^{n}:$ For $t \in\left[t_{n}, t_{n+1}\right]$ we set

$$
\gamma_{Z}(t):=\frac{t_{n+1}-t}{t_{n+1}-t_{n}} \cdot \gamma\left(t_{n}\right)+\frac{t-t_{n}}{t_{n+1}-t_{n}} \cdot \gamma\left(t_{n+1}\right)
$$

Then γ_{Z} approximates γ by a polygon.
To understand this we consider an example: Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ defined by

$$
\gamma(t):=\binom{\cos (\pi \cdot t)}{\sin (\pi \cdot t)}
$$

Let Z_{n} be the partitions $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$.
(a) Visualise the path γ and the paths $\gamma_{Z_{2}}$ and $\gamma_{Z_{3}}$.
(b) Determine the length $L(\gamma)$ and $L\left(\gamma_{Z_{n}}\right)$ for each $n \in \mathbb{N} \backslash\{0\}$.
(c) Show that $L(\gamma)=\lim _{n \rightarrow \infty} L\left(\gamma_{Z_{n}}\right)$.

Remark: Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ a path which is continuously differentiable except in finitely many points, then the length of γ is defined by

$$
L(\gamma):=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t
$$

Exercise H3 (Curves, path length and rectifiability II)
Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a path. We call γ rectifiable, if the following supremum exists:

$$
l(\gamma)=\sup \left\{L\left(\gamma_{Z}\right): Z \text { is a partition of }[0,1]\right\} .
$$

Let Z be a partition of $[0,1]$. We call a partition Z^{\prime} of $[0,1]$ a refinement of Z, if $Z \subseteq Z^{\prime}$ and write $Z \leq Z^{\prime}$. The mesh $|Z|$ of a partition $Z=\left\{0=t_{0}, t_{1}, \ldots, t_{n}=1\right\}$ is defined by

$$
|Z|:=\max \left\{t_{k+1}-t_{k}: 0 \leq k \leq n-1\right\} .
$$

(a) Show that for each refinement $Z \leq Z^{\prime}$ one has $L\left(\gamma_{Z}\right) \leq L\left(\gamma_{Z^{\prime}}\right)$.
(b) Show that every continuously differentiable path is rectifiable with $l(\gamma)=L(\gamma)$.

