Analysis III - Complex Analysis 1. Exercise Sheet

Department of Mathematics

WS 11/12
Prof. Dr. Burkhard Kümmerer
October 18, 2011
Andreas Gärtner
Walter Reußwig

Groupwork

Exercise G1 (Power series of real functions)
We consider the following functions which are defined on the whole real axis:

$$
f_{1}(x):=\left\{\begin{array}{ll}
e^{-\frac{1}{x^{2}}} & x \neq 0 \\
0 & x=0,
\end{array} \quad f_{2}(x):=\frac{x^{2}}{1+x^{2}}, \quad f_{3}(x):=1-e^{-\frac{x^{2}}{2}}\right.
$$

Sketch the graphs of these functions and expand them in $x_{0}=0$ into a Taylor series. Determine for each Taylor series the greatest open subset $U \subset \mathbb{R}$ such that the series represents the function.

Exercise G2 (Complex functions and real vector fields)
We already know that \mathbb{C} is isomorphic to \mathbb{R}^{2} as a real vector space with the canonical \mathbb{R}-Basis $\{1, i\}$. In this way we identify the complex numer $z=a+b i$ with the vector $\binom{a}{b}$. For this exercise we call this identification the canonical identification of \mathbb{C} with \mathbb{R}^{2}.
Now we consider the complex polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(z):=z^{2}+1$.
(a) Show that f is complex differentiable in the following sense: For each complex number $z \in \mathbb{C}$ the limit

$$
f^{\prime}(z):=\lim _{\omega \rightarrow 0} \frac{f(z+\omega)-f(z)}{\omega}
$$

exists. Calculate $f^{\prime}(z)$ explicitely.
(b) We define the real vector field

$$
F(x, y):=\binom{\operatorname{Re}(f(x+y \cdot i)}{\operatorname{Im}(f(x+y \cdot i)}
$$

Show that this vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is everywhere differentiable and calculate the Jacobian.
(c) Is there some remarkable relation of the Jacobian $J_{F}(x, y)$ and the value of $f^{\prime}(x+y i)$? Hint: Any complex linear funcion $T: \mathbb{C} \rightarrow \mathbb{C}$ is of course a real linear function.

Exercise G3 (Fields, matrices and complex numbers)
Let \mathbb{K} be a field and let $\lambda \in \mathbb{K}$ be a number which has no square root in \mathbb{K}, i. e. there is no element $\mu \in \mathbb{K}$ with $\mu^{2}=\lambda$.
Let $M_{2}(\mathbb{K})$ be the set of all 2×2 matrices with entries in \mathbb{K}. In this exercise we consider the subset

$$
\mathbb{L}:=\left\{\left(\begin{array}{cc}
a & \lambda \cdot b \\
b & a
\end{array}\right), \quad a, b \in \mathbb{K}\right\} \subseteq M_{2}(\mathbb{K}) .
$$

(a) Show that \mathbb{L} is a field with the usual matrix addition and matrix multiplication. Assure yourself that

$$
\mathbb{K} \ni x \rightarrow\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)=: x \cdot \mathbb{1} \in \mathbb{L}
$$

defines an injective field homomorphism.
Hint: You may use your knowledge of matrices over fields to avoid proving every axiom for a field.
(b) in which way is $l:=\left(\begin{array}{ll}0 & \lambda \\ 1 & 0\end{array}\right)$ special?
(c) What can you say about the eigenvalues of $a \cdot \mathbb{1}+b \cdot l$?
(d) Find a subset of $M_{2}(\mathbb{R})$ which is isomorphic to \mathbb{C}.
(e) Is there a field with 9 elements?

Exercise G4 (Visualisation of complex functions)
Consider the complex polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(z)=z^{2}$ and the following subset M of \mathbb{C} :

$$
M:=\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1,0 \leq \operatorname{Im}(z) \leq 1\} .
$$

(a) Is M open, closed, bounded, compact, convex?
(b) Calculate the image $f(M)$ and visualize the action of f by laying a grid into M, paramterizing grid lines by paths and calculating the image under f of these paths. Draw them into a draft and look on the angles of intersecting image paths. Looks something particular?
(c) What is the image of the half disk $\{z \in \mathbb{C}: \operatorname{Im}(z) \geq 0$ and $|z|<1\}$?

Homework

Exercise H1 (Curves and path length)
Let $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ be a regular path which parameterises a curve $\Gamma \subseteq \mathbb{R}^{n}$. The arc length $s:[a, b] \rightarrow \mathbb{R}$ of γ is defined as follows:

$$
s(t):=\int_{a}^{t}\left\|\gamma^{\prime}(x)\right\| d x
$$

(a) Calculate $s(t)$ for the path $\gamma:[1,2] \rightarrow \mathbb{R}^{3}$ with $\gamma(t):=\left(\begin{array}{c}2 \cdot t \\ t^{2} \\ \ln (t)\end{array}\right)$.
(b) Why do we assume the path beeing regular instead of continuously differentiable?
(c) Show that $s:[a, b] \rightarrow[0, l(\gamma)]$ is a diffeomorphism for a regular path. Use this for writing down a parameterisation $\phi:[0, l(\gamma)] \rightarrow \Gamma$ (The parameterisation by the arc length).
(d) Consider the curve $\Gamma:=\left\{(x, y) \in \mathbb{R}^{2}: y^{3}-x^{2}=0\right\} \cap[-1,1] \times[-1,1]$. Is it possible to parameterise this curve continuously differentiable? Is it possible to parameterise this curve regularly? Prove your claim.

Exercise H2 (A very important vector field)
Consider the function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ defined by $f(z):=\frac{1}{z}$.
(a) Calculate the real vector field $F: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2} \backslash\{0\}$ which describes after canconical representation of \mathbb{R}^{2} and \mathbb{C} the function f.
(b) Determine all points $(x, y) \in \mathbb{R}^{2} \backslash\{0\}$ in which F is differentiable. For which points $(x, y) \in$ $\mathbb{R}^{2} \backslash\{0\}$ is the Jacobian $J_{F}(x, y)$ the action of a complex linear map?

Exercise H3 (Path connectedness)
Let (X, d) be a metric space. We call a metric space path connected if for any two poins $x, y \in X$ there is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$. Show the following statements:
(a) Let (X, d) and (Y, \tilde{d}) be metric spaces and $f: X \rightarrow Y$ a surjective continuous map. Then Y is path connected if X is path connected.
(b) The set of all orthorgonal 2×2 matrices over \mathbb{R} called $O_{2}(\mathbb{R})$ is not path connected. For this you can choose any norm on $M_{2}(\mathbb{R})$ to get a metric on $O_{2}(\mathbb{R})$: The result is independend of the chosen norm.
Hint: You can use that the coordinate evaluation maps $A \rightarrow A_{i, j}$ are continuous. By (a) it must be possible to find a path disconnected metric space (Y, d) and a surjective continuous $\operatorname{map} f: O_{2}(\mathbb{R}) \rightarrow Y$.
(c) Let (X, d) and (Y, \tilde{d}) be metric spaces and let $\varphi: X \rightarrow Y$ be a homeomorphism. Then X is path connected iff Y is path connected.
Remark: 'Iff' means if and only if. It's a common and often used abbreviation in mathematical literature.
(d) There is no homeomorphism $f: \mathbb{R} \rightarrow \mathbb{C}$ if \mathbb{R} and \mathbb{C} carry the natural metric induced by the absolute value $|\cdot|$.
(e) There is no isomorphism of fields $\varphi: \mathbb{R} \rightarrow \mathbb{C}$.
($\mathrm{f} * *$) There is a bijection $\Phi: \mathbb{R} \rightarrow \mathbb{C}$.
Remark: In the last steps we see an interesting fact: The real numbers and the complex numbers are different fields, different metric spaces but as sets they are equal in some sense.

