Analysis III – Complex Analysis 1. Exercise Sheet

Department of Mathematics Prof. Dr. Burkhard Kümmerer Andreas Gärtner Walter Reußwig WS 11/12 October 18, 2011

Groupwork

Exercise G1 (Power series of real functions)

We consider the following functions which are defined on the whole real axis:

$$f_1(x) := \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0, \end{cases}$$
 $f_2(x) := \frac{x^2}{1 + x^2}, \qquad f_3(x) := 1 - e^{-\frac{x^2}{2}}.$

Sketch the graphs of these functions and expand them in $x_0 = 0$ into a Taylor series. Determine for each Taylor series the greatest open subset $U \subset \mathbb{R}$ such that the series represents the function.

Exercise G2 (Complex functions and real vector fields)

We already know that $\mathbb C$ is isomorphic to $\mathbb R^2$ as a real vector space with the canonical $\mathbb R$ -Basis $\{1,i\}$. In this way we identify the complex numer z=a+bi with the vector $\begin{pmatrix} a \\ b \end{pmatrix}$. For this exercise we call this identification the *canonical identification of* $\mathbb C$ *with* $\mathbb R^2$. Now we consider the complex polynomial $f:\mathbb C\to\mathbb C$ with $f(z):=z^2+1$.

(a) Show that f is complex differentiable in the following sense: For each complex number $z \in \mathbb{C}$ the limit

$$f'(z) := \lim_{\omega \to 0} \frac{f(z+\omega) - f(z)}{\omega}$$

exists. Calculate f'(z) explicitely.

(b) We define the real vector field

$$F(x,y) := \begin{pmatrix} \operatorname{Re}(f(x+y \cdot i)) \\ \operatorname{Im}(f(x+y \cdot i)) \end{pmatrix}.$$

Show that this vector field $F: \mathbb{R}^2 \to \mathbb{R}^2$ is everywhere differentiable and calculate the Jacobian.

(c) Is there some remarkable relation of the Jacobian $J_F(x, y)$ and the value of f'(x + yi)? **Hint:** Any complex linear function $T : \mathbb{C} \to \mathbb{C}$ is of course a real linear function.

1

Exercise G3 (Fields, matrices and complex numbers)

Let \mathbb{K} be a field and let $\lambda \in \mathbb{K}$ be a number which has no square root in \mathbb{K} , i. e. there is no element $\mu \in \mathbb{K}$ with $\mu^2 = \lambda$.

Let $M_2(\mathbb{K})$ be the set of all 2×2 matrices with entries in \mathbb{K} . In this exercise we consider the subset

$$\mathbb{L} := \left\{ \begin{pmatrix} a & \lambda \cdot b \\ b & a \end{pmatrix}, \quad a, b \in \mathbb{K} \right\} \subseteq M_2(\mathbb{K}).$$

(a) Show that $\mathbb L$ is a field with the usual matrix addition and matrix multiplication. Assure yourself that

$$\mathbb{K} \ni x \to \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} =: x \cdot \mathbb{1} \in \mathbb{L}$$

defines an injective field homomorphism.

Hint: You may use your knowledge of matrices over fields to avoid proving every axiom for a field.

- (b) in which way is $l := \begin{pmatrix} 0 & \lambda \\ 1 & 0 \end{pmatrix}$ special?
- (c) What can you say about the eigenvalues of $a \cdot 1 + b \cdot l$?
- (d) Find a subset of $M_2(\mathbb{R})$ which is isomorphic to \mathbb{C} .
- (e) Is there a field with 9 elements?

Exercise G4 (Visualisation of complex functions)

Consider the complex polynomial $f: \mathbb{C} \to \mathbb{C}$ with $f(z) = z^2$ and the following subset M of \mathbb{C} :

$$M := \{ z \in \mathbb{C} : 0 \le \text{Re}(z) \le 1, 0 \le \text{Im}(z) \le 1 \}.$$

- (a) Is *M* open, closed, bounded, compact, convex?
- (b) Calculate the image f(M) and visualize the action of f by laying a grid into M, paramterizing grid lines by paths and calculating the image under f of these paths. Draw them into a draft and look on the angles of intersecting image paths. Looks something particular?
- (c) What is the image of the half disk $\{z \in \mathbb{C} : \text{Im}(z) \ge 0 \text{ and } |z| < 1\}$?

Homework

Exercise H1 (Curves and path length)

(1 point)

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a regular path which parameterises a curve $\Gamma\subseteq\mathbb{R}^n$. The arc length $s:[a,b]\to\mathbb{R}$ of γ is defined as follows:

$$s(t) := \int_a^t \|\gamma'(x)\| dx.$$

- (a) Calculate s(t) for the path $\gamma:[1,2] \to \mathbb{R}^3$ with $\gamma(t):=\begin{pmatrix} 2 \cdot t \\ t^2 \\ \ln(t) \end{pmatrix}$.
- (b) Why do we assume the path beeing regular instead of continuously differentiable?
- (c) Show that $s:[a,b] \to [0,l(\gamma)]$ is a diffeomorphism for a regular path. Use this for writing down a parameterisation $\phi:[0,l(\gamma)] \to \Gamma$ (The parameterisation by the arc length).
- (d) Consider the curve $\Gamma := \{(x,y) \in \mathbb{R}^2 : y^3 x^2 = 0\} \cap [-1,1] \times [-1,1]$. Is it possible to parameterise this curve continuously differentiable? Is it possible to parameterise this curve regularly? Prove your claim.

Exercise H2 (A very important vector field)

(1 point)

Consider the function $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ defined by $f(z) := \frac{1}{z}$.

- (a) Calculate the real vector field $F: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ which describes after canconical representation of \mathbb{R}^2 and \mathbb{C} the function f.
- (b) Determine all points $(x, y) \in \mathbb{R}^2 \setminus \{0\}$ in which F is differentiable. For which points $(x, y) \in \mathbb{R}^2 \setminus \{0\}$ is the Jacobian $J_F(x, y)$ the action of a complex linear map?

Exercise H3 (Path connectedness)

(1 point)

Let (X, d) be a metric space. We call a metric space *path connected* if for any two poins $x, y \in X$ there is a continuous path $\gamma : [0, 1] \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$. Show the following statements:

- (a) Let (X, d) and (Y, \tilde{d}) be metric spaces and $f: X \to Y$ a surjective continuous map. Then Y is path connected if X is path connected.
- (b) The set of all orthorgonal 2×2 matrices over \mathbb{R} called $O_2(\mathbb{R})$ is not path connected. For this you can choose any norm on $M_2(\mathbb{R})$ to get a metric on $O_2(\mathbb{R})$: The result is independent of the chosen norm.

Hint: You can use that the coordinate evaluation maps $A \to A_{i,j}$ are continuous. By (a) it must be possible to find a path disconnected metric space (Y, d) and a surjective continuous map $f: O_2(\mathbb{R}) \to Y$.

(c) Let (X,d) and (Y,\tilde{d}) be metric spaces and let $\varphi:X\to Y$ be a homeomorphism. Then X is path connected iff Y is path connected.

Remark: 'Iff' means if and only if. It's a common and often used abbreviation in mathematical literature.

- (d) There is no homeomorphism $f: \mathbb{R} \to \mathbb{C}$ if \mathbb{R} and \mathbb{C} carry the natural metric induced by the absolute value $|\cdot|$.
- (e) There is no isomorphism of fields $\varphi : \mathbb{R} \to \mathbb{C}$.
- (f**) There is a bijection $\Phi : \mathbb{R} \to \mathbb{C}$.

Remark: In the last steps we see an interesting fact: The real numbers and the complex numbers are different fields, different metric spaces but as sets they are equal in some sense.